inmost_dense.h 21.8 KB
Newer Older
1
2
3
4
5
6
#ifndef INMOST_DENSE_INCLUDED
#define INMOST_DENSE_INCLUDED
#include "inmost_common.h"
#if defined(USE_AUTODIFF)
#include "inmost_expression.h"
#endif
Kirill Terekhov's avatar
Kirill Terekhov committed
7
#include <iomanip>
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

// Matrix with n columns and m rows
//   __m__
//  |     |
// n|     |
//  |_____|
//
// todo: 
// 1. expression templates for operations
//    (???) how to for multiplication?
// 2. (ok) template matrix type for AD variables


namespace INMOST
{
  

  template<class A, class B> struct Promote;
  template<> struct Promote<INMOST_DATA_REAL_TYPE, INMOST_DATA_REAL_TYPE> {typedef INMOST_DATA_REAL_TYPE type;};
#if defined(USE_AUTODIFF)
  template<> struct Promote<INMOST_DATA_REAL_TYPE, variable>  {typedef variable type;};
  template<> struct Promote<variable, INMOST_DATA_REAL_TYPE>  {typedef variable type;};
  template<> struct Promote<variable, variable> {typedef variable type;};
#else
  INMOST_DATA_REAL_TYPE get_value(INMOST_DATA_REAL_TYPE x) {return x;}
#endif

  template<typename Var>
  class Matrix
  {
  public:
    typedef unsigned enumerator;
  protected:
    array<Var> space;
    enumerator n, m;
  

Kirill Terekhov's avatar
Kirill Terekhov committed
45
46
    static Var sign_func(const Var & a, const Var & b) {return (b >= 0.0 ? fabs(a) : -fabs(a));}
	  static INMOST_DATA_REAL_TYPE max_func(INMOST_DATA_REAL_TYPE x, INMOST_DATA_REAL_TYPE y) { return x > y ? x : y; }
47
48
49
	  static Var pythag(const Var & a, const Var & b)
	  {
		  Var at = fabs(a), bt = fabs(b), ct, result;
Kirill Terekhov's avatar
Kirill Terekhov committed
50
51
		  if (at > bt)       { ct = bt / at; result = at * sqrt(1.0 + ct * ct); }
		  else if (bt > 0.0) { ct = at / bt; result = bt * sqrt(1.0 + ct * ct); }
52
53
54
55
		  else result = 0.0;
		  return result;
	  }
  public:
Kirill Terekhov's avatar
Kirill Terekhov committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    void RemoveRow(enumerator row)
    {
      for(enumerator k = row+1; k < n; ++k)
      {
        for(enumerator l = 0; l < m; ++l)
          (*this)(k-1,l) = (*this)(k,l);
      }
      space.resize((n-1)*m);
      --n;
    }
    void RemoveColumn(enumerator col)
    {
      array<Var> tmp(n*(m-1));
      for(enumerator k = 0; k < n; ++k)
      {
        for(enumerator l = col+1; l < m; ++l)
          (*this)(k,l-1) = (*this)(k,l);
      }
      space.swap(tmp);
      --m;
    }
77
78
79
80
81
82
    void Swap(Matrix & b)
    {
      space.swap(b.space);
      std::swap(n,b.n);
      std::swap(m,b.m);
    }
Kirill Terekhov's avatar
Kirill Terekhov committed
83
84
85
86
87
88
89
    /// Singular value decomposition.
    /// Reconstruct matrix: A = U*Sigma*V.Transpose().
    /// @param U Left unitary matrix, U^T U = I.
    /// @param Sigma Diagonal matrix with singular values.
    /// @param V Right unitary matrix, not transposed.
    /// @param order_singular_values
    bool SVD(Matrix & U, Matrix & Sigma, Matrix & V, bool order_singular_values = true)
90
91
92
    {
      int flag, i, its, j, jj, k, l, nm;
      Var c, f, h, s, x, y, z;
Kirill Terekhov's avatar
Kirill Terekhov committed
93
94
      Var g = 0.0, scale = 0.0;
      INMOST_DATA_REAL_TYPE anorm = 0.0;
95
96
      if (n < m) 
      {
Kirill Terekhov's avatar
Kirill Terekhov committed
97
        bool success = Transpose().SVD(U,Sigma,V);
98
99
        if( success )
        {
Kirill Terekhov's avatar
Kirill Terekhov committed
100
          U.Swap(V);
101
          U = U.Transpose();
Kirill Terekhov's avatar
Kirill Terekhov committed
102
          V = V.Transpose();
103
104
105
106
107
108
109
110
111
          return true;
        }
        else return false;
      } //m <= n
      array<Var> _rv1(m);
      shell<Var> rv1(_rv1);
      U = (*this);
      Sigma.Resize(m,m);
      Sigma.Zero();
Kirill Terekhov's avatar
Kirill Terekhov committed
112
      V.Resize(m,m);
113
114
115
  
      std::swap(n,m); //this how original algorithm takes it
      // Householder reduction to bidiagonal form
Kirill Terekhov's avatar
Kirill Terekhov committed
116
      for (i = 0; i < (int)n; i++) 
117
118
119
120
121
      {
        // left-hand reduction
        l = i + 1;
        rv1[i] = scale * g;
        g = s = scale = 0.0;
Kirill Terekhov's avatar
Kirill Terekhov committed
122
        if (i < (int)m) 
123
        {
Kirill Terekhov's avatar
Kirill Terekhov committed
124
          for (k = i; k < (int)m; k++) scale += fabs(U(k,i));
125
126
          if (get_value(scale)) 
          {
Kirill Terekhov's avatar
Kirill Terekhov committed
127
            for (k = i; k < (int)m; k++) 
128
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
129
130
              U(k,i) /= scale;
              s += U(k,i) * U(k,i);
131
            }
Kirill Terekhov's avatar
Kirill Terekhov committed
132
            f = U(i,i);
133
134
            g = -sign_func(sqrt(s), f);
            h = f * g - s;
Kirill Terekhov's avatar
Kirill Terekhov committed
135
            U(i,i) = f - g;
136
137
            if (i != n - 1) 
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
138
              for (j = l; j < (int)n; j++) 
139
              {
Kirill Terekhov's avatar
Kirill Terekhov committed
140
                for (s = 0.0, k = i; k < (int)m; k++) s += U(k,i) * U(k,j);
141
                f = s / h;
Kirill Terekhov's avatar
Kirill Terekhov committed
142
                for (k = i; k < (int)m; k++) U(k,j) += f * U(k,i);
143
144
              }
            }
Kirill Terekhov's avatar
Kirill Terekhov committed
145
            for (k = i; k < (int)m; k++) U(k,i) *= scale;
146
147
          }
        }
Kirill Terekhov's avatar
Kirill Terekhov committed
148
        Sigma(i,i) = scale * g;
149
150
        // right-hand reduction
        g = s = scale = 0.0;
Kirill Terekhov's avatar
Kirill Terekhov committed
151
        if (i < (int)m && i != n - 1) 
152
        {
Kirill Terekhov's avatar
Kirill Terekhov committed
153
          for (k = l; k < (int)n; k++) scale += fabs(U(i,k));
154
155
          if (get_value(scale)) 
          {
Kirill Terekhov's avatar
Kirill Terekhov committed
156
            for (k = l; k < (int)n; k++) 
157
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
158
159
              U(i,k) = U(i,k)/scale;
              s += U(i,k) * U(i,k);
160
            }
Kirill Terekhov's avatar
Kirill Terekhov committed
161
            f = U(i,l);
162
163
            g = -sign_func(sqrt(s), f);
            h = f * g - s;
Kirill Terekhov's avatar
Kirill Terekhov committed
164
165
            U(i,l) = f - g;
            for (k = l; k < (int)n; k++) rv1[k] = U(i,k) / h;
166
167
            if (i != m - 1) 
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
168
              for (j = l; j < (int)m; j++) 
169
              {
Kirill Terekhov's avatar
Kirill Terekhov committed
170
171
                for (s = 0.0, k = l; k < (int)n; k++) s += U(j,k) * U(i,k);
                for (k = l; k < (int)n; k++) U(j,k) += s * rv1[k];
172
173
              }
            }
Kirill Terekhov's avatar
Kirill Terekhov committed
174
            for (k = l; k < (int)n; k++) U(i,k) *= scale;
175
176
          }
        }
Kirill Terekhov's avatar
Kirill Terekhov committed
177
        anorm = max_func(anorm,fabs(get_value(Sigma(i,i))) + fabs(get_value(rv1[i])));
178
179
180
181
182
      }

      // accumulate the right-hand transformation
      for (i = n - 1; i >= 0; i--) 
      {
Kirill Terekhov's avatar
Kirill Terekhov committed
183
        if (i < (int)(n - 1)) 
184
185
186
        {
          if (get_value(g)) 
          {
Kirill Terekhov's avatar
Kirill Terekhov committed
187
            for (j = l; j < (int)n; j++) V(j,i) = ((U(i,j) / U(i,l)) / g);
188
            // double division to avoid underflow
Kirill Terekhov's avatar
Kirill Terekhov committed
189
            for (j = l; j < (int)n; j++) 
190
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
191
192
              for (s = 0.0, k = l; k < (int)n; k++) s += U(i,k) * V(k,j);
              for (k = l; k < (int)n; k++) V(k,j) += s * V(k,i);
193
194
            }
          }
Kirill Terekhov's avatar
Kirill Terekhov committed
195
          for (j = l; j < (int)n; j++) V(i,j) = V(j,i) = 0.0;
196
        }
Kirill Terekhov's avatar
Kirill Terekhov committed
197
        V(i,i) = 1.0;
198
199
200
201
202
203
204
205
        g = rv1[i];
        l = i;
      }

      // accumulate the left-hand transformation
      for (i = n - 1; i >= 0; i--) 
      {
        l = i + 1;
Kirill Terekhov's avatar
Kirill Terekhov committed
206
207
208
209
        g = Sigma(i,i);
        if (i < (int)(n - 1)) 
          for (j = l; j < (int)n; j++) 
            U(i,j) = 0.0;
210
211
212
213
214
        if (get_value(g)) 
        {
          g = 1.0 / g;
          if (i != n - 1) 
          {
Kirill Terekhov's avatar
Kirill Terekhov committed
215
            for (j = l; j < (int)n; j++) 
216
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
217
218
219
              for (s = 0.0, k = l; k < (int)m; k++) s += (U(k,i) * U(k,j));
              f = (s / U(i,i)) * g;
              for (k = i; k < (int)m; k++) U(k,j) += f * U(k,i);
220
221
            }
          }
Kirill Terekhov's avatar
Kirill Terekhov committed
222
          for (j = i; j < (int)m; j++) U(j,i) = U(j,i)*g;
223
        }
Kirill Terekhov's avatar
Kirill Terekhov committed
224
225
        else for (j = i; j < (int)m; j++) U(j,i) = 0.0;
        U(i,i) += 1;
226
227
228
229
230
231
232
233
234
235
236
      }

      // diagonalize the bidiagonal form
      for (k = n - 1; k >= 0; k--) 
      {// loop over singular values
        for (its = 0; its < 30; its++) 
        {// loop over allowed iterations
          flag = 1;
          for (l = k; l >= 0; l--) 
          {// test for splitting
            nm = l - 1;
Kirill Terekhov's avatar
Kirill Terekhov committed
237
            if (fabs(get_value(rv1[l])) + anorm == anorm) 
238
239
240
241
            {
              flag = 0;
              break;
            }
Kirill Terekhov's avatar
Kirill Terekhov committed
242
            if (fabs(get_value(Sigma(nm,nm))) + anorm == anorm) 
243
244
245
246
247
248
249
250
251
              break;
          }
          if (flag) 
          {
            c = 0.0;
            s = 1.0;
            for (i = l; i <= k; i++) 
            {
              f = s * rv1[i];
Kirill Terekhov's avatar
Kirill Terekhov committed
252
              if (fabs(get_value(f)) + anorm != anorm) 
253
              {
Kirill Terekhov's avatar
Kirill Terekhov committed
254
                g = Sigma(i,i);
255
                h = pythag(f, g);
Kirill Terekhov's avatar
Kirill Terekhov committed
256
                Sigma(i,i) = h; 
257
258
259
                h = 1.0 / h;
                c = g * h;
                s = (- f * h);
Kirill Terekhov's avatar
Kirill Terekhov committed
260
                for (j = 0; j < (int)m; j++) 
261
                {
Kirill Terekhov's avatar
Kirill Terekhov committed
262
263
264
265
                  y = U(j,nm);
                  z = U(j,i);
                  U(j,nm) = (y * c + z * s);
                  U(j,i) = (z * c - y * s);
266
267
268
269
                }
              }
            }
          }
Kirill Terekhov's avatar
Kirill Terekhov committed
270
          z = Sigma(k,k);
271
272
273
274
          if (l == k) 
          {// convergence
            if (z < 0.0) 
            {// make singular value nonnegative
Kirill Terekhov's avatar
Kirill Terekhov committed
275
276
              Sigma(k,k) = -z;
              for (j = 0; j < (int)n; j++) V(j,k) = -V(j,k);
277
278
279
280
281
282
283
284
285
286
            }
            break;
          }
          if (its >= 30) 
          {
            std::cout << "No convergence after " << its << " iterations" << std::endl;
            std::swap(n,m);
            return false;
          }
          // shift from bottom 2 x 2 minor
Kirill Terekhov's avatar
Kirill Terekhov committed
287
          x = Sigma(l,l);
288
          nm = k - 1;
Kirill Terekhov's avatar
Kirill Terekhov committed
289
          y = Sigma(nm,nm);
290
291
292
293
294
295
296
297
298
299
300
          g = rv1[nm];
          h = rv1[k];
          f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
          g = pythag(f, 1.0);
          f = ((x - z) * (x + z) + h * ((y / (f + sign_func(g, f))) - h)) / x;
          // next QR transformation
          c = s = 1.0;
          for (j = l; j <= nm; j++) 
          {
            i = j + 1;
            g = rv1[i];
Kirill Terekhov's avatar
Kirill Terekhov committed
301
            y = Sigma(i,i);
302
303
304
305
306
307
308
309
310
311
            h = s * g;
            g = c * g;
            z = pythag(f, h);
            rv1[j] = z;
            c = f / z;
            s = h / z;
            f = x * c + g * s;
            g = g * c - x * s;
            h = y * s;
            y = y * c;
Kirill Terekhov's avatar
Kirill Terekhov committed
312
            for (jj = 0; jj < (int)n; jj++) 
313
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
314
315
316
317
              x = V(jj,j);
              z = V(jj,i);
              V(jj,j) = (x * c + z * s);
              V(jj,i) = (z * c - x * s);
318
319
            }
            z = pythag(f, h);
Kirill Terekhov's avatar
Kirill Terekhov committed
320
            Sigma(j,j) = z;
321
322
323
324
325
326
327
328
            if (z) 
            {
              z = 1.0 / z;
              c = f * z;
              s = h * z;
            }
            f = (c * g) + (s * y);
            x = (c * y) - (s * g);
Kirill Terekhov's avatar
Kirill Terekhov committed
329
            for (jj = 0; jj < (int)m; jj++) 
330
            {
Kirill Terekhov's avatar
Kirill Terekhov committed
331
332
333
334
              y = U(jj,j);
              z = U(jj,i);
              U(jj,j) = (y * c + z * s);
              U(jj,i) = (z * c - y * s);
335
336
337
338
            }
          }
          rv1[l] = 0.0;
          rv1[k] = f;
Kirill Terekhov's avatar
Kirill Terekhov committed
339
          Sigma(k,k) = x;
340
341
        }
      }
Kirill Terekhov's avatar
Kirill Terekhov committed
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
      //CHECK THIS!
      if( order_singular_values )
      {
        for(i = 0; i < (int)n; i++)
		    {
			    k = i;
			    for(j = i+1; j < (int)n; ++j)
				    if( Sigma(k,k) < Sigma(j,j) ) k = j;
			    Var temp;
			    if( Sigma(k,k) > Sigma(i,i) )
			    {
				    temp       = Sigma(k,k);
				    Sigma(k,k) = Sigma(i,i);
				    Sigma(i,i) = temp;
            // U is m by n
            for(int j = 0; j < (int)m; ++j)
				    {
					    temp   = U(j,k);
					    U(j,k) = U(j,i);
					    U(j,i) = temp;
            }
            // V is n by n
            for(int j = 0; j < (int)n; ++j)
            {
					    temp   = V(j,k);
					    V(j,k) = V(j,i);
					    V(j,i) = temp;
				    }
			    }
		    }
      }
      
374
375
376
      std::swap(n,m);
      return true;
    }
Kirill Terekhov's avatar
Kirill Terekhov committed
377
    Matrix() : space(0),n(0),m(0) {}
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
    Matrix(Var * pspace, enumerator pn, enumerator pm) : space(pspace,pspace+pn*pm), n(pn), m(pm) {}
    Matrix(enumerator pn, enumerator pm) : space(pn*pm), n(pn), m(pm) {}
    Matrix(const Matrix & other) : space(other.n*other.m), n(other.n), m(other.m) 
    {
      for(enumerator i = 0; i < n*m; ++i)
        space[i] = other.space[i];
    }
    ~Matrix() {}
    void Resize(enumerator nrows, enumerator mcols)
    {
      if( space.size() != mcols*nrows )
        space.resize(mcols*nrows);
      n = nrows;
      m = mcols;
    }
    Matrix & operator =(Matrix const & other)
    {
      space.resize(other.n*other.m);
      for(enumerator i = 0; i < other.n*other.m; ++i)
        space[i] = other.space[i];
      n = other.n;
      m = other.m;
      return *this;
    }
    // i is in [0,n] - row index
    // j is in [0,m] - column index
    Var & operator()(enumerator i, enumerator j)
    {
      assert(i >= 0 && i < n);
      assert(j >= 0 && j < m);
      assert(i*m+j < n*m); //overflow check?
      return space[i*m+j];
    }
    Var operator()(enumerator i, enumerator j) const
    {
      assert(i >= 0 && i < n);
      assert(j >= 0 && j < m);
      assert(i*m+j < n*m); //overflow check?
      return space[i*m+j];
    }
    Matrix operator-() const
    {
      Matrix ret(n,m);
      for(enumerator k = 0; k < n*m; ++k) ret.space[k] = -space[k];
      return ret;
    }
    template<typename typeB>
    Matrix<typename Promote<Var,typeB>::type> operator-(const Matrix<typeB> & other) const
    {
      assert(Rows() == other.Rows());
      assert(Cols() == other.Cols());
      Matrix<typename Promote<Var,typeB>::type> ret(n,m); //check RVO
      for(enumerator k = 0; k < n*m; ++k) ret.space[k] = space[k]-other.space[k];
      return ret;
    }
    Matrix & operator-=(const Matrix & other)
    {
      assert(n == other.n);
      assert(m == other.m);
      for(enumerator k = 0; k < n*m; ++k) space[k] -= other.space[k];
      return *this;
    }
    template<typename typeB>
    Matrix<typename Promote<Var,typeB>::type> operator+(const Matrix<typeB> & other) const
    {
      assert(Rows() == other.Rows());
      assert(Cols() == other.Cols());
      Matrix<typename Promote<Var,typeB>::type> ret(n,m); //check RVO
      for(enumerator k = 0; k < n*m; ++k) ret.space[k] = space[k]+other.space[k];
      return ret;
    }
    Matrix & operator+=(const Matrix & other)
    {
      assert(n == other.n);
      assert(m == other.m);
      for(enumerator k = 0; k < n*m; ++k) space[k] += other.space[k];
      return *this;
    }
    template<typename typeB>
    Matrix<typename Promote<Var,typeB>::type> operator*(typeB coef) const
    {
      Matrix<typename Promote<Var,typeB>::type> ret(n,m); //check RVO
      for(enumerator k = 0; k < n*m; ++k) ret.space[k] = space[k]*coef;
      return ret;
    }
    Matrix & operator*=(Var coef)
    {
      for(enumerator k = 0; k < n*m; ++k) space[k] *= coef;
      return *this;
    }
    template<typename typeB>
    Matrix<typename Promote<Var,typeB>::type> operator/(typeB coef) const
    {
      Matrix<typename Promote<Var,typeB>::type> ret(n,m); //check RVO
      for(enumerator k = 0; k < n*m; ++k) ret.space[k] = space[k]/coef;
      return ret;
    }
    Matrix & operator/=(Var coef)
    {
      for(enumerator k = 0; k < n*m; ++k) space[k] /= coef;
      return *this;
    }
    template<typename typeB>
    Matrix<typename Promote<Var,typeB>::type> operator*(const Matrix<typeB> & other) const
    {
      assert(Cols() == other.Rows());
      Matrix<typename Promote<Var,typeB>::type> ret(Rows(),other.Cols()); //check RVO
      for(enumerator i = 0; i < Rows(); ++i) //loop rows
      {
        for(enumerator j = 0; j < other.Cols(); ++j) //loop columns
        {
          typename Promote<Var,typeB>::type tmp = 0.0;
          for(enumerator k = 0; k < Cols(); ++k)
            tmp += (*this)(i,k)*other(k,j);
          ret(i,j) = tmp;
        }
      }
      return ret;
    }
    /// performs A*B^{-1}
    /// checks existence of B^{-1} only in debug mode.
    template<typename typeB>
    Matrix<typename Promote<Var,typeB>::type> operator/(const Matrix<typeB> & other) const
    {
      std::pair<Matrix<typeB>,bool> other_inv = other.Invert();
      assert(other_inv.second);
      assert(Cols() == other_inv.Rows());
      Matrix<typename Promote<Var,typeB>::type> ret(n,other.m); //check RVO
      for(enumerator i = 0; i < Rows(); ++i) //loop rows
      {
        for(enumerator j = 0; j < other_inv.Cols(); ++j) //loop columns
        {
          typename Promote<Var,typeB>::type tmp = 0.0;
          for(enumerator k = 0; k < Cols(); ++k)
            tmp += (*this)(i,k)*other_inv.first(k,j);
          ret(i,j) = tmp;
        }
      }
      return ret;
    }
    Matrix Transpose() const
    {
      Matrix ret(m,n);
      for(enumerator i = 0; i < n; ++i)
      {
        for(enumerator j = 0; j < m; ++j)
        {
          ret(j,i) = (*this)(i,j);
        }
      }
      return ret;
    }
Kirill Terekhov's avatar
Kirill Terekhov committed
530
    std::pair<Matrix,bool> Invert(bool print_fail = false) const
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
    {
      std::pair<Matrix,bool> ret = std::make_pair(Matrix(m,n),true);
      Matrix At = Transpose(); //m by n matrix
      Matrix AtB = At*Unit(n); //m by n matrix
      Matrix AtA = At*(*this); //m by m matrix
      enumerator * order = new enumerator [m];
      for(enumerator i = 0; i < m; ++i) order[i] = i;
      for(enumerator i = 0; i < m; i++)
	    {
		    enumerator maxk = i, maxq = i, temp2;
        Var max, temp;
		    max = fabs(AtA(maxk,maxq));
		    //Find best pivot
        for(enumerator k = i; k < m; k++) // over rows
		    {
			    for(enumerator q = i; q < m; q++) // over columns
			    {
				    if( fabs(AtA(k,q)) > max )
				    {
					    max = fabs(AtA(k,q));
					    maxk = k;
					    maxq = q;
				    }
			    }
		    }
		    //Exchange rows
		    if( maxk != i ) 
		    {
			    for(enumerator q = 0; q < m; q++) // over columns of A
			    {
				    temp = AtA(maxk,q);
				    AtA(maxk,q) = AtA(i,q);
				    AtA(i,q) = temp;
			    }
			    //exchange rhs
			    for(enumerator q = 0; q < n; q++) // over columns of B
			    {
				    temp = AtB(maxk,q);
				    AtB(maxk,q) = AtB(i,q);
				    AtB(i,q) = temp;
			    }
		    }
		    //Exchange columns
		    if( maxq != i ) 
		    {
			    for(enumerator k = 0; k < m; k++) //over rows
			    {
				    temp = AtA(k,maxq);
				    AtA(k,maxq) = AtA(k,i);
				    AtA(k,i) = temp;
			    }
			    //remember order in sol
			    {
				    temp2 = order[maxq];
				    order[maxq] = order[i];
				    order[i] = temp2;
			    }
		    }

		    if( fabs(AtA(i,i)) < 1.0e-54 )
		    {
			    bool ok = true;
			    for(enumerator k = 0; k < n; k++) // over columns of B
			    {
				    if( fabs(AtB(i,k)/1.0e-54) > 1 )
				    {
					    ok = false;
					    break;
				    }
			    }
			    if( ok ) AtA(i,i) = AtA(i,i) < 0.0 ? - 1.0e-12 : 1.0e-12;
			    else
          {
Kirill Terekhov's avatar
Kirill Terekhov committed
604
            if( print_fail ) std::cout << "Failed to invert matrix" << std::endl;
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
            ret.second = false;
            return ret;
          }
		    }
		    for(enumerator k = i+1; k < m; k++)
		    {
			    AtA(i,k) /= AtA(i,i);
			    AtA(k,i) /= AtA(i,i);
		    }
		    for(enumerator k = i+1; k < m; k++)
		    for(enumerator q = i+1; q < m; q++)
		    {
			    AtA(k,q) -= AtA(k,i) * AtA(i,i) * AtA(i,q);
		    }
		    for(enumerator k = 0; k < n; k++)
		    {
			    for(enumerator j = i+1; j < m; j++) //iterate over columns of L
			    {
				    AtB(j,k) -= AtB(i,k) * AtA(j,i);
			    }
			    AtB(i,k) /= AtA(i,i);
		    }
	    }

	    for(enumerator k = 0; k < n; k++)
	    {
		    for(enumerator i = m; i-- > 0; ) //iterate over rows of U
			    for(enumerator j = i+1; j < m; j++) 
			    {
				    AtB(i,k) -= AtB(j,k) * AtA(i,j);
			    }
		    for(enumerator i = 0; i < m; i++)
			    ret.first(order[i],k) = AtB(i,k);
	    }
      delete [] order;
      return ret;
    }
    void Zero()
    {
      for(enumerator i = 0; i < n*m; ++i) space[i] = 0.0;
    }
    Var Trace() const
    {
      assert(n == m);
      Var ret = 0.0;
      for(enumerator i = 0; i < n; ++i) ret += (*this)(i,i);
      return ret;
    }
    Var * data() {return space.data();}
    const Var * data() const {return space.data();}
    enumerator Rows() const {return n;}
    enumerator Cols() const {return m;}
    void Print(INMOST_DATA_REAL_TYPE threshold = 1.0e-10) const
    {
      for(enumerator k = 0; k < n; ++k)
      {
        for(enumerator l = 0; l < m; ++l) 
        {
          if( fabs(get_value((*this)(k,l))) > threshold )
Kirill Terekhov's avatar
Kirill Terekhov committed
664
            std::cout << std::setw(10) << get_value((*this)(k,l));
665
          else 
Kirill Terekhov's avatar
Kirill Terekhov committed
666
            std::cout << std::setw(10) << 0;
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
          std::cout << " ";
        }
        std::cout << std::endl;
      }
    }
    bool isSymmetric() const
    {
      if( n != m ) return false;
      for(enumerator k = 0; k < n; ++k)
      {
        for(enumerator l = k+1; l < n; ++l)
          if( fabs((*this)(k,l)-(*this)(l,k)) > 1.0e-7 )
            return false;
      }
      return true;
    }
Kirill Terekhov's avatar
Kirill Terekhov committed
683
684
    template<typename typeB>
    typename Promote<Var,typeB>::type DotProduct(const Matrix<typeB> & other) const
685
686
687
    {
      assert(n == other.n);
      assert(m == other.m);
Kirill Terekhov's avatar
Kirill Terekhov committed
688
689
690
691
      typename Promote<Var,typeB>::type ret = 0.0;
      for(enumerator i = 0; i < n; ++i)
        for(enumerator j = 0; j < m; ++j)
          ret += ((*this)(i,j))*other(i,j);
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
      return ret;
    }
    Var FrobeniusNorm()
    {
      Var ret = 0;
      for(enumerator i = 0; i < n*m; ++i) ret += space[i]*space[i];
      return sqrt(ret);
    }
    static Matrix<Var> FromTensor(Var * K, enumerator size)
    {
      Matrix<Var> Kc(3,3);
      switch(size)
      {
      case 1: //scalar permeability tensor
        Kc.Zero();
        Kc(0,0) = Kc(1,1) = Kc(2,2) = K[0];
      case 3:
        Kc.Zero(); //diagonal permeability tensor 
        Kc(0,0) = K[0]; //KXX
        Kc(1,1) = K[1]; //KYY
        Kc(2,2) = K[2]; //KZZ
        break;
      case 6: //symmetric permeability tensor
        Kc(0,0) = K[0]; //KXX
        Kc(0,1) = Kc(1,0) = K[1]; //KXY
        Kc(0,2) = Kc(2,0) = K[2]; //KXZ
        Kc(1,1) = K[3]; //KYY
        Kc(1,2) = Kc(2,1) = K[4]; //KYZ
        Kc(2,2) = K[5]; //KZZ
        break;
      case 9: //full permeability tensor
        Kc(0,0) = K[0]; //KXX
        Kc(0,1) = K[1]; //KXY
        Kc(0,2) = K[2]; //KXZ
        Kc(1,0) = K[3]; //KYX
        Kc(1,1) = K[4]; //KYY
        Kc(1,2) = K[5]; //KYZ
        Kc(2,0) = K[6]; //KZX
        Kc(2,1) = K[7]; //KZY
        Kc(2,2) = K[8]; //KZZ
        break;
      }
      return Kc;
    }
    //retrive vector in matrix form from array
    static Matrix<Var> FromVector(Var * n, enumerator size)
    {
      return Matrix(n,size,1);
    }
    //create diagonal matrix from array
    static Matrix<Var> FromDiagonal(Var * r, enumerator size)
    {
      Matrix ret(size,size);
      ret.Zero();
      for(enumerator k = 0; k < size; ++k) ret(k,k) = r[k];
      return ret;
    }
    //create diagonal matrix from array of inversed values
    static Matrix<Var> FromDiagonalInverse(Var * r, enumerator size)
    {
      Matrix ret(size,size);
      ret.Zero();
      for(enumerator k = 0; k < size; ++k) ret(k,k) = 1.0/r[k];
      return ret;
    }
    //Unit matrix
    static Matrix Unit(enumerator pn)
    {
      Matrix ret(pn,pn);
      ret.Zero();
      for(enumerator i = 0; i < pn; ++i) ret(i,i) = 1.0;
      return ret;
    }
  };


  typedef Matrix<INMOST_DATA_REAL_TYPE> rMatrix; //shortcut for real matrix
#if defined(USE_AUTODIFF)
  typedef Matrix<variable> vMatrix; //shortcut for matrix with variations
#endif
}


#endif //INMOST_DENSE_INCLUDED