incident_matrix.hpp 15.7 KB
Newer Older
Kirill Terekhov's avatar
Kirill Terekhov committed
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
#include "inmost.h"
#include <stack>
#if defined(USE_MESH)

//TODO:
// incident_matrix class should measure for minimal volume,
// possibly check and update from projects/OctreeCutcell/octgrid.cpp

namespace INMOST
{

	__INLINE void make_vec(const Storage::real p1[3], const Storage::real p2[3], Storage::real out[3])
	{
		out[0] = p1[0] - p2[0];
		out[1] = p1[1] - p2[1];
		out[2] = p1[2] - p2[2];
	}

	__INLINE void cross_prod(const Storage::real v1[3],const Storage::real v2[3], Storage::real out[3])
	{
		out[0] = v1[1]*v2[2] - v1[2]*v2[1];
		out[1] = v1[2]*v2[0] - v1[0]*v2[2];
		out[2] = v1[0]*v2[1] - v1[1]*v2[0];
	}

	__INLINE Storage::real __det3d(Storage::real a, Storage::real b, Storage::real c,
	                             Storage::real d, Storage::real e, Storage::real f,
	                             Storage::real g, Storage::real h, Storage::real i ) 
	{
		return a*e*i - c*e*g + b*f*g - a*f*h + c*d*h - b*d*i;
	}
	
	__INLINE Storage::real __det3v(const Storage::real * x,const Storage::real * y,const Storage::real * z) 
	{
		return __det3d(x[0], x[1], x[2],  y[0], y[1], y[2],  z[0], z[1], z[2]);
	}

	__INLINE Storage::real dot_prod(const Storage::real v1[3],const Storage::real v2[3])
	{
		return v1[0]*v2[0]+v1[1]*v2[1]+v1[2]*v2[2];
	}
	
	typedef struct orient_face_t
	{
		Edge bridge;
		Node first;
		Face face;
		orient_face_t(Edge _bridge, Node _first, Face _face)
		:bridge(_bridge),first(_first),face(_face)
		{
		}
	} orient_face;
	
	template<class T>
	class incident_matrix
	{
		Mesh * mesh;
		dynarray< unsigned char, 4096 > matrix;
		dynarray< char ,256 > visits;
		dynarray<HandleType, 256> head_column;
		dynarray<HandleType, 256> head_row;
		dynarray<unsigned char ,256> head_row_count;
		dynarray<unsigned, 256> insert_order;
		bool exit_recurse;
		ElementArray<T> min_loop, temp_loop; //used as return
		dynarray< char , 256 > hide_column;
		dynarray< char , 256 > hide_row;
		dynarray< char , 256 > stub_row;
		dynarray< double, 192 > centroids, normals;
		double min_loop_measure;
		
		bool do_hide_row(unsigned k)
		{
			if( hide_column[k] == 0 )
			{
				hide_column[k] = 1;
				for(unsigned i = 0; i < head_row_count.size(); i++)
					if( matrix[k*head_row_count.size()+i] == 1 )
					{
						head_row_count[i] -= 1;
						if( head_row_count[i] == 0 )
						{
							hide_row[i] = 1;
							stub_row[i] = 0;
						}
					}
				insert_order.pop_back();
			}
			return true;
		}
		
		bool do_show_row(unsigned k)
		{
			if( hide_column[k] == 1 )
			{
				hide_column[k] = 0;
				
				bool success = true;
				for(unsigned i = 0; i < head_row_count.size(); i++)
					if( matrix[k*head_row_count.size()+i] == 1 )
					{
						head_row_count[i] += 1;
						if( head_row_count[i] > 0 ) hide_row[i] = 0;
						if( head_row_count[i] > 2 ) success = false;
					}
				insert_order.push_back(k);
				if( !success ) do_hide_row(k);
				return success;
				
			} else return true;
		}
		bool test_success()
		{
			bool success = true;
			for(unsigned j = 0; j < head_row_count.size(); j++)
			{
				if( head_row_count[j] == 1 )
				{
					success = false;
					break;
				}
			}
			return success;
		}
		Storage::real compute_measure(ElementArray<T> & data)
		{
			Storage::real measure = 0;
			if( data[0]->GetElementDimension() == 1 ) //this is edge //use geometric dimension here for 2d compatibility
			{
				//calculate area
				int mdim = data[0]->GetMeshLink()->GetDimensions();
				ElementArray<Node> nodes,n1,n2;
				n1 = data[0]->getNodes();
				n2 = data[1]->getNodes();
				if( n1[0] == n2[0] || n1[0] == n2[1])
				{
					nodes.push_back(n1[1]);
					nodes.push_back(n1[0]);
				}
				else
				{
					nodes.push_back(n1[0]);
					nodes.push_back(n1[1]);
				}
				for(typename ElementArray<T>::size_type j = 1; j < data.size(); j++)
				{
					n1 = data[j]->getNodes();
					if( nodes.back() == n1[0] )
						nodes.push_back(n1[1]);
					else
						nodes.push_back(n1[0]);
				}
				
				Storage::real x[3] = {0,0,0};
				Storage::real_array x0 = nodes[0].Coords();
				for(unsigned i = 1; i < nodes.size()-1; i++)
				{
					Storage::real_array v1 = nodes[i].Coords();
					Storage::real_array v2 = nodes[i+1].Coords();
					if( mdim == 3 )
					{
						x[0] += (v1[1]-x0[1])*(v2[2]-x0[2]) - (v1[2]-x0[2])*(v2[1]-x0[1]);
						x[1] += (v1[2]-x0[2])*(v2[0]-x0[0]) - (v1[0]-x0[0])*(v2[2]-x0[2]);
					}
					x[2] += (v1[0]-x0[0])*(v2[1]-x0[1]) - (v1[1]-x0[1])*(v2[0]-x0[0]);
				}
				measure = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2])*0.5;
				
			}
			else //this is 3d face
			{
				//firstly, have to figure out orientation of each face
				//mark all faces, so that we can perform adjacency retrival
				MarkerType mrk = mesh->CreatePrivateMarker();
				MarkerType rev = mesh->CreatePrivateMarker(); //reverse orientation
				data.SetPrivateMarker(mrk);
				data[0]->RemPrivateMarker(mrk); //0-th face orientation is default
				Node n1,n2; //to retrive edge
				bool reverse = false; //reverse orientation in considered face
				std::deque< orient_face > stack; //edge and first node and face for visiting
				//todo: can do faster by retriving edges and going over their nodes
				//should not use FindSharedAdjacency
				ElementArray<Edge> edges = data[0]->getEdges();
				do
				{
					//figure out starting node order
					if( edges[0]->getBeg() == edges[1]->getBeg() ||
					    edges[0]->getBeg() == edges[1]->getEnd() )
					{
						n1 = edges[0]->getEnd();
						n2 = edges[0]->getBeg();
					}
					else
					{
						n1 = edges[0]->getBeg();
						n2 = edges[0]->getEnd();
					}
					//schedule unvisited adjacent faces
					for(typename ElementArray<Edge>::size_type j = 0; j < edges.size(); j++)
					{
						//schedule face adjacent to considered edge
						ElementArray<Face> adjacent = edges[j]->getFaces(mrk);
						assert(adjacent.size() <= 1);
						if( !adjacent.empty() && adjacent[0].GetPrivateMarker(mrk))
						{
							adjacent.RemPrivateMarker(mrk);
							stack.push_back(orient_face(edges[j],reverse ? n2 : n1,adjacent[0]));
						}
						//update edge nodes
						n1 = n2; //current end is new begin
						//find new end
Kirill Terekhov's avatar
Kirill Terekhov committed
212 213
						if( n2 == edges[(j+1)%edges.size()]->getBeg() )
							n2 = edges[(j+1)%edges.size()]->getEnd();
Kirill Terekhov's avatar
Kirill Terekhov committed
214
						else
Kirill Terekhov's avatar
Kirill Terekhov committed
215
							n2 = edges[(j+1)%edges.size()]->getBeg();
Kirill Terekhov's avatar
Kirill Terekhov committed
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
					}
					if( stack.empty() ) break;
					//get entry from stack
					orient_face r = stack.front();
					//remove face from stack
					stack.pop_front();
					//retrive edges for new face
					edges = r.face->getEdges();
					reverse = false;
					//figure out starting node order
					if( edges[0]->getBeg() == edges[1]->getBeg() ||
					    edges[0]->getBeg() == edges[1]->getEnd() )
					{
						n1 = edges[0]->getEnd();
						n2 = edges[0]->getBeg();
					}
					else
					{
						n1 = edges[0]->getBeg();
						n2 = edges[0]->getEnd();
					}
					//find out common edge orientation
					for(typename ElementArray<Node>::size_type j = 0; j < edges.size(); j++)
					{
						if( edges[j] == r.bridge ) //found the edge
						{
							//reverse ordering on this face
							if( r.first == n1 )
							{
								r.face->SetPrivateMarker(rev);
								reverse = true;
							}
							break;
						}
						//update edge nodes
						n1 = n2; //current end is new begin
						//find new end
Kirill Terekhov's avatar
Kirill Terekhov committed
253 254
						if( n2 == edges[(j+1)%edges.size()]->getBeg() )
							n2 = edges[(j+1)%edges.size()]->getEnd();
Kirill Terekhov's avatar
Kirill Terekhov committed
255
						else
Kirill Terekhov's avatar
Kirill Terekhov committed
256
							n2 = edges[(j+1)%edges.size()]->getBeg();
Kirill Terekhov's avatar
Kirill Terekhov committed
257 258 259 260 261 262 263 264 265 266 267 268
					}
				} while(true);
				data.RemPrivateMarker(mrk);
				mesh->ReleasePrivateMarker(mrk);
				Storage::real v[3], d;
				for(typename ElementArray<T>::size_type j = 0; j < data.size(); j++)
				{
					d = 0;
					ElementArray<Node> nodes = data[j]->getNodes();
					if( !nodes.empty() )
					{
						Storage::real_array a = nodes[0].Coords();
Kirill Terekhov's avatar
Kirill Terekhov committed
269
						if( data[j]->GetPrivateMarker(rev) )
Kirill Terekhov's avatar
Kirill Terekhov committed
270
						{
Kirill Terekhov's avatar
Kirill Terekhov committed
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
							for(typename ElementArray<Node>::size_type j = 1; j < nodes.size()-1; j++)
							{
								Storage::real_array b = nodes[j].Coords();
								Storage::real_array c = nodes[j+1].Coords();
								d += __det3v(&a[0],&b[0],&c[0]);
							}
						}
						else
						{
							for(typename ElementArray<Node>::size_type j = nodes.size()-2; j > 1; j--)
							{
								Storage::real_array b = nodes[j].Coords();
								Storage::real_array c = nodes[j-1].Coords();
								d += __det3v(&a[0],&b[0],&c[0]);
							}
Kirill Terekhov's avatar
Kirill Terekhov committed
286 287
						}
					}
Kirill Terekhov's avatar
Kirill Terekhov committed
288
					measure += d;
Kirill Terekhov's avatar
Kirill Terekhov committed
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548
				}
				data.RemPrivateMarker(rev);
				mesh->ReleasePrivateMarker(rev);
				measure /= 6.0;
				measure = fabs(measure);
			}
			return measure;
		}
		void recursive_find(unsigned node, unsigned length)
		{
			if( !min_loop.empty() && length > min_loop.size() ) return;
			bool success = false;
			if( do_show_row(node) )
			{
				success = test_success();
				
				if( success )
				{
					if( min_loop.empty() || min_loop.size() >= length )
					{
						
						
						temp_loop.resize(length);
						for(unsigned j = 0; j < insert_order.size(); j++)
							temp_loop.at(j) = head_column[insert_order[j]];
						/*
						 // TODO:
						 // MUST CORRECTLY COMPUTE VOLUMES HERE FOR CONCAVE POLYGONS/POLYHEDRONS!
						 // this should work instead of min_loop
						 bool ok = false;
						 if( temp_loop.size() <= min_loop.size() )
						 {
						 Storage::real measure = compute_measure(temp_loop);
						 
						 if( measure > 0 && measure < min_loop_measure )
						 {
							ok = true;
							min_loop_measure = measure;
						 }
						 }
						 else
						 {
						 Storage::real measure = compute_measure(temp_loop);
						 if( measure > 0 )
						 {
							ok = true;
							min_loop_measure = measure;
						 }
						 }
						 
						 if( ok )
						 */
						{
							min_loop.swap(temp_loop);
							
							//~ if( min_loop.size() == head_column.size() ) // all elements were visited
							//~ {
							//~ unsigned num = 0;
							//~ for(unsigned j = 0; j < head_row.size(); j++) //check that all bridge elements were visited - we don't have any other loop then
							//~ num += hide_row[j];
							//~ if( num == head_row.size() ) exit_recurse = true; //exit recursive loop
							//~ }
						}
					}
				}
				else
				{
					bool stub = false;
					for(dynarray<unsigned char,256>::size_type j = 0; j < head_row_count.size() && !exit_recurse; j++) //first try follow the order
					{
						if( stub_row[j] == 0 && matrix[node*head_row_count.size()+j] == 1 && head_row_count[j] == 1 )
						{
							for(dynarray<HandleType,256>::size_type q = 0; q < head_column.size() && !exit_recurse; q++)
							{
								if( visits[q] > 0 && matrix[q*head_row_count.size()+j] == 1 && hide_column[q] == 1 )
								{
									recursive_find(static_cast<unsigned>(q),length+1);
								}
							}
							if( head_row_count[j] == 1 )
							{
								stub_row[j] = 1;
								stub = true;
								break; //this is a stub path
							}
						}
					}
					
					if( !stub ) for(dynarray<unsigned char,256>::size_type j = 0; j < head_row_count.size() && !exit_recurse; j++)
					{
						if( stub_row[j] == 0 && matrix[node*head_row_count.size()+j] == 0 && head_row_count[j] == 1 )
						{
							for(dynarray<HandleType,256>::size_type q = 0; q < head_column.size() && !exit_recurse; q++)
							{
								if( visits[q] > 0 && matrix[q*head_row_count.size()+j] == 1 && hide_column[q] == 1 )
								{
									recursive_find(static_cast<unsigned>(q),length+1);
								}
							}
							if( head_row_count[j] == 1 )
							{
								stub_row[j] = 1;
								stub = true;
								break; //this is a stub path
							}
						}
					}
					
				}
				do_hide_row(node);
			}
			if( length == 1 )
			{
				for(dynarray<HandleType,256>::size_type j = 0; j < head_row.size(); j++)
					stub_row[j] = 0;
			}
		}
	public:
		bool all_visited()
		{
			for(dynarray<char,256>::size_type k = 0; k < visits.size(); k++)
				if( visits[k] != 0 ) return false;
			return true;
		}
		void print_matrix()
		{
			Storage::real cnt[3];
			for(dynarray<HandleType,256>::size_type k = 0; k < head_column.size(); k++)
			{
				for(dynarray<HandleType,256>::size_type j = 0; j < head_row.size(); j++)
					std::cout << static_cast<int>(matrix[k*head_row.size()+ j]);
				std::cout << " " << (int)visits[k];
				Element(mesh,head_column[k])->Centroid(cnt);
				std::cout << " " << cnt[0] << " " << cnt[1] << " " << cnt[2];
				std::cout << std::endl;
			}
			std::cout << std::endl;
		}
		template<typename InputIterator>
		incident_matrix(Mesh * mesh, InputIterator beg, InputIterator end, typename ElementArray<T>::size_type num_inner)
		: mesh(mesh), head_column(beg,end), min_loop()
		{
			min_loop.SetMeshLink(mesh);
			temp_loop.SetMeshLink(mesh);
			//isInputForwardIterators<T,InputIterator>();
			if( !head_column.empty() )
			{
				MarkerType hide_marker = mesh->CreateMarker();
				
				visits.resize(head_column.size());
				for(typename dynarray<HandleType, 256>::size_type it = 0; it < head_column.size(); ++it)
				{
					visits[it] = it < num_inner ? 2 : 1;
					Element::adj_type const & sub = mesh->LowConn(head_column[it]);
					for(Element::adj_type::size_type jt = 0; jt < sub.size(); ++jt)
					{
						if( !mesh->GetMarker(sub[jt],hide_marker) )
						{
							head_row.push_back(sub[jt]);
							mesh->SetMarker(sub[jt],hide_marker);
						}
					}
				}
				tiny_map<HandleType,int,256> mat_num;
				for(dynarray<HandleType,256>::size_type it = 0; it < head_row.size(); ++it)
				{
					mesh->RemMarker(head_row[it],hide_marker);
					mat_num[head_row[it]] = static_cast<int>(it);
				}
				
				mesh->ReleaseMarker(hide_marker);
				
				matrix.resize(head_row.size()*head_column.size(),0);
				
				
				
				for(typename dynarray<HandleType,256>::size_type it = 0; it < head_column.size(); ++it)
				{
					Element::adj_type const & sub = mesh->LowConn(head_column[it]);
					for(Element::adj_type::size_type jt = 0; jt < sub.size(); ++jt)
					{
						matrix[(it)*head_row.size()+mat_num[sub[jt]]] = 1;
					}
				}
				head_row_count.resize(head_row.size(),0);
				stub_row.resize(head_row.size(),0);
				hide_row.resize(head_row.size(),1);
				hide_column.resize(head_column.size(),1);
			}
		}
		incident_matrix(const incident_matrix & other)
		: mesh(other.mesh), matrix(other.matrix), head_column(other.head_column), head_row(other.head_row),
		head_row_count(other.head_row_count), min_loop(other.min_loop),
		hide_row(other.hide_row), hide_column(other.hide_column),
		stub_row(other.stub_row)
		{
		}
		incident_matrix & operator =(const incident_matrix & other)
		{
			mesh = other.mesh;
			matrix = other.matrix;
			head_column = other.head_column;
			head_row = other.head_row;
			head_row_count = other.head_row_count;
			min_loop = other.min_loop;
			hide_row = other.hide_row;
			hide_column = other.hide_column;
			stub_row = other.stub_row;
			return *this;
		}
		~incident_matrix()
		{
		}
		bool find_shortest_loop(ElementArray<T> & ret)
		{
			ret.clear();
			exit_recurse = false;
			unsigned first = UINT_MAX;
			do
			{
				first = UINT_MAX;
				for(unsigned q = 0; q < head_column.size(); q++)
					if( visits[q] == 1 )
					{
						first = q;
						break;
					}
				if( first != UINT_MAX )
				{
					recursive_find(first,1);
					if( min_loop.empty() )
						visits[first]--; //don't start again from this element
				}
			} while( min_loop.empty() && first != UINT_MAX );
			
			ret.insert(ret.end(),min_loop.begin(),min_loop.end());
			min_loop.clear();
			
			if( !ret.empty() )
			{
				MarkerType hide_marker = mesh->CreateMarker();
				for(typename ElementArray<T>::size_type k = 0; k < ret.size(); k++) mesh->SetMarker(ret.at(k),hide_marker);
				for(dynarray<HandleType,256>::size_type k = 0; k < head_column.size(); k++)
					if( mesh->GetMarker(head_column[k],hide_marker) ) visits[k]--;
				for(typename ElementArray<T>::size_type k = 0; k < ret.size(); k++) mesh->RemMarker(ret.at(k),hide_marker);
				mesh->ReleaseMarker(hide_marker);
				return true;
			}
			return false;
		}
		
		Element get_element(unsigned k) {return Element(mesh,head_column[k]);}
		void set_visit(unsigned k, char vis ) { visits[k] = vis; }
	};
}




#endif