amesh.cpp 25.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
#include "amesh.h"

/// todo:
/// 1. coarsment
/// 2. strategy for faces/edges with faults
/// 3. geom model support
/// 4. make class abstract virtual for user implementation of refinement and coarsment indicators
/// see in code todo:
namespace INMOST
{
	void CleanupSets(ElementSet set)
	{
		ElementSet::iterator it = set.Begin();
		while(it != set.End())
		{
			if( it->isValid() ) ++it;
			else it = set.Erase(it);
		}
		for(ElementSet child = set.GetChild(); child.isValid(); child = child.GetSibling())
			CleanupSets(child);
	}
	
	void ReduceMax(const Tag & tag, const Element & element, const INMOST_DATA_BULK_TYPE * data, INMOST_DATA_ENUM_TYPE size)
	{
		(void) size;
		element->Integer(tag) = std::max(element->Integer(tag),*((const INMOST_DATA_INTEGER_TYPE *)data));
	}
	
	void ReduceMin(const Tag & tag, const Element & element, const INMOST_DATA_BULK_TYPE * data, INMOST_DATA_ENUM_TYPE size)
	{
		(void) size;
		element->Integer(tag) = std::min(element->Integer(tag),*((const INMOST_DATA_INTEGER_TYPE *)data));
	}
	
	
	void AdaptiveMesh::ClearData()
	{
		level         = DeleteTag(level);
		hanging_nodes = DeleteTag(hanging_nodes);
		parent_set    = DeleteTag(parent_set);
		root.DeleteSetTree();
	}
	
	void AdaptiveMesh::PrepareSet()
	{
		//retrive set for coarsening, initialize set if is not present
		if( !root.isValid() )
		{
			root = GetSet("ROOT_SET");
			if( root == InvalidElement() )
			{
				root = CreateSetUnique("ROOT_SET").first;
				level[root] = 0;
				for(iteratorCell it = BeginCell(); it != EndCell(); ++it)
				{
					root.PutElement(it->self());
					parent_set[it->self()] = root.GetHandle();
				}
			}
		}
		if( !HaveGlobalID(CELL) ) AssignGlobalID(CELL); //for unique set names
	}
	
	AdaptiveMesh::AdaptiveMesh() : Mesh()
	{
		//create a tag that stores maximal refinement level of each element
		level = CreateTag("REFINEMENT_LEVEL",DATA_INTEGER,CELL|FACE|EDGE|NODE|ESET,NONE,1);
		//create a tag that stores links to all the hanging nodes of the cell
		hanging_nodes = CreateTag("HANGING_NODES",DATA_REFERENCE,CELL|FACE,NONE);
		//create a tag that stores links to sets
		parent_set = CreateTag("PARENT_SET",DATA_REFERENCE,CELL,NONE,1);
	}
	
	AdaptiveMesh::~AdaptiveMesh()
	{
		//do not delete tags, user may want to repetitively use this class
		//as extension of class mesh in limited code span
	}
	
	bool AdaptiveMesh::Refine(TagInteger & indicator)
	{
		static int call_counter = 0;
		int ret = 0; //return number of refined cells
		//initialize tree structure
		PrepareSet();
		int schedule_counter = 1; //indicates order in which refinement will be scheduled
		int scheduled = 1; //indicates that at least one element was scheduled on current sweep
		//0. Extend indicator for edges and faces
		indicator = CreateTag(indicator.GetTagName(),DATA_INTEGER,FACE|EDGE,NONE,1);
		while(scheduled)
		{
			//1.Communicate indicator - it may be not synced
			ExchangeData(indicator,CELL,0);
			//2.Propogate indicator down to the faces,edges
			//  select schedule for them
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( indicator[c] == schedule_counter )
				{
					ElementArray<Element> adj = c.getAdjElements(FACE|EDGE);
					for(ElementArray<Element>::size_type kt = 0; kt < adj.size(); ++kt)
					{
						if( level[adj[kt]] == level[c] ) //do not schedule finer or coarser elements
							indicator[adj[kt]] = schedule_counter; //refine together with current cell
					}
				}
			}
			//3.Communicate indicator on faces and edges
			ExchangeData(indicator,FACE|EDGE,0);
			//4.Check for each cell if there is
			//  any hanging node with adjacent in a need to refine,
			//  schedule for refinement earlier.
			scheduled = 0;
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				//already scheduled cells may be required to be refined first
				//if( indicator[c] == 0 ) //some optimization
				{
					bool scheduled_c = false;
					//any finer level edge is scheduled to be refined first
					ElementArray<Edge> edges = c->getEdges();
					for(ElementArray<Edge>::size_type kt = 0; kt < edges.size() && !scheduled_c; ++kt)
					{
						//if a finer edge is scheduled
						//then this cell should be refined first
						if( indicator[edges[kt]] != 0 &&
							level[edges[kt]] > level[c] &&
							indicator[edges[kt]] >= indicator[c] )
						{
							indicator[c] = schedule_counter+1;
							scheduled++;
							scheduled_c = true;
						}
					}
				}
			}
			//5.Go back to 1 until no new elements scheduled
			scheduled = Integrate(scheduled);
			if( scheduled ) schedule_counter++;
		}
		//6.Refine
		BeginModification();
		while(schedule_counter)
		{
			Storage::real xyz[3] = {0,0,0};
			//7.split all edges of the current schedule
			for(Storage::integer it = 0; it < EdgeLastLocalID(); ++it) if( isValidEdge(it) )
			{
				Edge e = EdgeByLocalID(it);
				if( !e.Hidden() && indicator[e] == schedule_counter )
				{
					//remember adjacent faces that should get information about new hanging node
					ElementArray<Face> edge_faces = e.getFaces();
					//location on the center of the edge
					for(Storage::integer d = 0; d < GetDimensions(); ++d)
						xyz[d] = (e.getBeg().Coords()[d]+e.getEnd().Coords()[d])*0.5;
					//todo: request transformation of node location according to geometrical model
					//create middle node
					Node n = CreateNode(xyz);
					//set increased level for new node
					level[n] = level[e.getBeg()] = level[e.getEnd()] = level[e]+1;
					//for each face provide link to a new hanging node
					for(ElementArray<Face>::size_type kt = 0; kt < edge_faces.size(); ++kt)
						hanging_nodes[edge_faces[kt]].push_back(n);
					//split the edge by the middle node
					ElementArray<Edge> new_edges = Edge::SplitEdge(e,ElementArray<Node>(this,1,n.GetHandle()),0);
					//set increased level for new edges
					level[new_edges[0]] = level[new_edges[1]] = level[e]+1;
				}
			}
			//8.split all faces of the current schedule, using hanging nodes on edges
			for(Storage::integer it = 0; it < FaceLastLocalID(); ++it) if( isValidFace(it) )
			{
				Face f = FaceByLocalID(it);
				if( !f.Hidden() && indicator[f] == schedule_counter )
				{
					//connect face center to hanging nodes of the face
					Storage::reference_array face_hanging_nodes = hanging_nodes[f];
					//remember adjacent cells that should get information about new hanging node
					//and new hanging edges
					ElementArray<Cell> face_cells = f.getCells();
					//create node at face center
					//f->Centroid(xyz);
					for(int d = 0; d < 3; ++d) xyz[d] = 0.0;
					for(Storage::reference_array::size_type kt = 0; kt < face_hanging_nodes.size(); ++kt)
						for(int d = 0; d < 3; ++d) xyz[d] += face_hanging_nodes[kt].getAsNode().Coords()[d];
					for(int d = 0; d < 3; ++d) xyz[d] /= (Storage::real)face_hanging_nodes.size();
					//todo: request transformation of node location according to geometrical model
					//create middle node
					Node n = CreateNode(xyz);
					//set increased level for the new node
					level[n] = level[f]+1;
					//for each cell provide link to new hanging node
					for(ElementArray<Face>::size_type kt = 0; kt < face_cells.size(); ++kt)
						hanging_nodes[face_cells[kt]].push_back(n);
					ElementArray<Node> edge_nodes(this,2); //to create new edges
					ElementArray<Edge> hanging_edges(this,face_hanging_nodes.size());
					edge_nodes[0] = n;
					for(Storage::reference_array::size_type kt = 0; kt < face_hanging_nodes.size(); ++kt)
					{
						edge_nodes[1] = face_hanging_nodes[kt].getAsNode();
						hanging_edges[kt] = CreateEdge(edge_nodes).first;
						//set increased level for new edges
						level[hanging_edges[kt]] = level[f]+1;
					}
					//split the face by these edges
					ElementArray<Face> new_faces = Face::SplitFace(f,hanging_edges,0);
					//set increased level to new faces
					for(ElementArray<Face>::size_type kt = 0; kt < new_faces.size(); ++kt)
						level[new_faces[kt]] = level[f]+1;
				}
			}
			//this tag helps recreate internal face
			TagReferenceArray internal_face_edges = CreateTag("INTERNAL_FACE_EDGES",DATA_REFERENCE,NODE,NODE,4);
			//this marker helps detect edges of current cell only
			MarkerType mark_cell_edges = CreateMarker();
			//this marker helps detect nodes hanging on edges of unrefined cell
			MarkerType mark_hanging_nodes = CreateMarker();
			//9.split all cells of the current schedule
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( !c.Hidden() && indicator[c] == schedule_counter )
				{
					Storage::reference_array cell_hanging_nodes = hanging_nodes[c]; //nodes to be connected
					//create node at cell center
					for(int d = 0; d < 3; ++d) xyz[d] = 0.0;
					for(Storage::reference_array::size_type kt = 0; kt < cell_hanging_nodes.size(); ++kt)
						for(int d = 0; d < 3; ++d) xyz[d] += cell_hanging_nodes[kt].getAsNode().Coords()[d];
					for(int d = 0; d < 3; ++d) xyz[d] /= (Storage::real)cell_hanging_nodes.size();
					//c->Centroid(xyz);
					//todo: request transformation of node location according to geometrical model
					//create middle node
					Node n = CreateNode(xyz);
					//set increased level for the new node
					level[n] = level[c]+1;
					//retrive all edges of current face to mark them
					ElementArray<Edge> cell_edges = c.getEdges();
					//mark all edges so that we can retive them later
					cell_edges.SetMarker(mark_cell_edges);
					//connect face center to centers of faces by edges
					ElementArray<Node> edge_nodes(this,2);
					ElementArray<Edge> edges_to_faces(this,cell_hanging_nodes.size());
					edge_nodes[0] = n;
					for(Storage::reference_array::size_type kt = 0; kt < cell_hanging_nodes.size(); ++kt)
					{
						assert(cell_hanging_nodes[kt].isValid());
						//todo: unmark hanging node on edge if no more cells depend on it
						edge_nodes[1] = cell_hanging_nodes[kt].getAsNode();
						edges_to_faces[kt] = CreateEdge(edge_nodes).first;
						//set increased level for new edges
						level[edges_to_faces[kt]] = level[c]+1;
						//for each node other then the hanging node of the face
						//(this is hanging node on the edge)
						//we record a pair of edges to reconstruct internal faces
						ElementArray<Edge> hanging_edges = cell_hanging_nodes[kt].getEdges(mark_cell_edges,0);
						for(ElementArray<Edge>::size_type lt = 0; lt < hanging_edges.size(); ++lt)
						{
							//get hanging node on the edge
							assert(hanging_edges[lt].getBeg() == cell_hanging_nodes[kt] || hanging_edges[lt].getEnd() == cell_hanging_nodes[kt]);
							Node v = hanging_edges[lt].getBeg() == cell_hanging_nodes[kt]? hanging_edges[lt].getEnd() : hanging_edges[lt].getBeg();
							//mark so that we can collect all of them
							v.SetMarker(mark_hanging_nodes);
							//fill the edges
							Storage::reference_array face_edges = internal_face_edges[v];
							//fill first two in forward order
							//this way we make a closed loop
							assert(face_edges[0] == InvalidElement() || face_edges[2] == InvalidElement());
							if( face_edges[0] == InvalidElement() )
							{
								face_edges[0] = edges_to_faces[kt];
								face_edges[1] = hanging_edges[lt];
							}
							else //last two in reverse
							{
								assert(face_edges[2] ==InvalidElement());
								face_edges[2] = hanging_edges[lt];
								face_edges[3] = edges_to_faces[kt];
							}
						}
					}
					//remove marker from cell edges
					cell_edges.RemMarker(mark_cell_edges);
					//now we have to create internal faces
					ElementArray<Node> edge_hanging_nodes = c.getNodes(mark_hanging_nodes,0);
					ElementArray<Face> internal_faces(this,edge_hanging_nodes.size());
					//unmark hanging nodes on edges
					edge_hanging_nodes.RemMarker(mark_hanging_nodes);
					for(ElementArray<Node>::size_type kt = 0; kt < edge_hanging_nodes.size(); ++kt)
					{
						//create a face based on collected edges
						Storage::reference_array face_edges = internal_face_edges[edge_hanging_nodes[kt]];
						assert(face_edges[0].isValid());
						assert(face_edges[1].isValid());
						assert(face_edges[2].isValid());
						assert(face_edges[3].isValid());
						internal_faces[kt] = CreateFace(ElementArray<Edge>(this,face_edges.begin(),face_edges.end())).first;
						//set increased level
						level[internal_faces[kt]] = level[c]+1;
						//clean up structure, so that other cells can use it
						edge_hanging_nodes[kt].DelData(internal_face_edges);
					}
					//split the cell
					ElementArray<Cell> new_cells = Cell::SplitCell(c,internal_faces,0);
					//retrive parent set
					ElementSet parent(this,parent_set[c]);
					//create set corresponding to old coarse cell
					std::stringstream set_name;
					set_name << parent.GetName() << "_C" << c.GlobalID(); //rand may be unsafe
					ElementSet cell_set = CreateSetUnique(set_name.str()).first;
					level[cell_set] = level[c]+1;
					//set up increased level for the new cells
					for(ElementArray<Cell>::size_type kt = 0; kt < new_cells.size(); ++kt)
					{
						level[new_cells[kt]] = level[c]+1;
						cell_set.PutElement(new_cells[kt]);
						parent_set[new_cells[kt]] = cell_set.GetHandle();
					}
					parent.AddChild(cell_set);
					//increment number of refined cells
					ret++;
				}
			}
			ReleaseMarker(mark_hanging_nodes);
			ReleaseMarker(mark_cell_edges);
			DeleteTag(internal_face_edges);
329
			//ExchangeData(hanging_nodes,CELL | FACE,0);
330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638
			//10.jump to later schedule, and go to 7.
			schedule_counter--;
		}
		//free created tag
		DeleteTag(indicator,FACE|EDGE);
		//11. Restore parallel connectivity, global ids
		//ResolveModification();
		//12. Let the user update their data
		//todo: call back function for New() cells
		//13. Delete old elements of the mesh
		ApplyModification();
		//14. Done
		EndModification();
		//reorder element's data to free up space
		ReorderEmpty(CELL|FACE|EDGE|NODE);
		//return number of refined cells
		call_counter++;
		return ret != 0;
	}
	
	
	
	
	
	
	bool AdaptiveMesh::Coarse(TagInteger & indicator)
	{
		static int call_counter = 0;
		//return number of coarsened cells
		int ret = 0;
		//initialize tree structure
		PrepareSet();
		int schedule_counter = 1; //indicates order in which refinement will be scheduled
		int scheduled = 1, unscheduled = 0; //indicates that at least one element was scheduled on current sweep
		//TagInteger coarsened = CreateTag("COARSENED",DATA_INTEGER,CELL,NONE,1);
		TagInteger coarse_indicator = CreateTag("COARSE_INDICATOR",DATA_INTEGER,EDGE,NONE,1); //used to find on fine cells indicator on coarse cells
		//0. Extend indicator for sets, edges and faces
		indicator = CreateTag(indicator.GetTagName(),DATA_INTEGER,FACE|EDGE,NONE,1);
		while(scheduled || unscheduled)
		{
			// rules
			// a) If there is adjacent finer edge that is not marked for coarsening
			// then this cell should not be coarsened
			// b) If there is adjacent coarser cell, then this cell should be coarsened
			// first
			//0.Communicate indicator - it may be not synced
			ExchangeData(indicator,CELL,0);
			//1. Mark each adjacent face/edge for coarsement schedule
			// problem: should mark so that if every adjacent cell is coarsened
			// then adjacent face/edge are also coarsened
			for(ElementType etype = EDGE; etype <= FACE; etype = NextElementType(etype))
			{
				//for(Storage::integer it = 0; it < LastLocalID(etype); ++it) if( isValidElement(etype,it) )
				//	indicator[ElementByLocalID(etype,it)] = 0;
				for(Storage::integer it = 0; it < LastLocalID(etype); ++it) if( isValidElement(etype,it) )
				{
					Element e = ElementByLocalID(etype,it);
					ElementArray<Cell> adj = e.getCells();
					indicator[e] = INT_MAX;
					for(ElementArray<Element>::size_type kt = 0; kt < adj.size(); ++kt)
						if( level[e] == level[adj[kt]]) indicator[e] = std::min(indicator[e],indicator[adj[kt]]);
					assert(indicator[e] != INT_MAX);
				}
			}
			//2.Communicate indicator on faces and edges
			ReduceData(indicator,FACE|EDGE,0,ReduceMin);
			//3.If there is adjacent finer edge that are not marked for coarsening
			// then this cell should not be coarsened
			unscheduled = scheduled = 0;
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( indicator[c] )
				{
					ElementArray<Edge> edges = c.getEdges();
					for(ElementArray<Edge>::size_type kt = 0; kt < edges.size(); ++kt)
					{
						if( level[edges[kt]] > level[c] && indicator[edges[kt]] == 0 )
						{
							indicator[c] = 0;
							unscheduled++;
						}
					}
				}
			}
			//4. Propogate coarsement info over set tree to detect valid coarsenings.
			// go down over sets, if set does not have children and all of the cells
			// of the set are marked for coarsening, then mark the set for coarsement
			// otherwise unmark.
			// Unmark all cells that are not to be coarsened
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( indicator[c] )
				{
					ElementSet parent(this,parent_set[c]);
					//intermediate cell may not be coarsened
					//root set may not have coarsening cells
					if( parent.HaveChild() || !parent.HaveParent() )
					{
						indicator[c] = 0;
						unscheduled++;
					}
					else
					{
						Storage::integer schedule_first = 0;
						bool check = true;
						//check that all elements of the set are to be coarsened
						for(ElementSet::iterator it = parent.Begin(); it != parent.End(); ++it)
						{
							check &= (indicator[it->self()] != 0);
							schedule_first = std::max(schedule_first,indicator[it->self()]);
						}
						if(!check)
						{
							indicator[c] = 0;
							unscheduled++;
						}
						else if( indicator[c] != schedule_first )
						{
							indicator[c] = schedule_first;
							unscheduled++;
						}
					}
				}
			}
			//5.If there is an adjacent coarser element to be refined, then
			//   this one should be scheduled to be refined first
			//a) clean up coarse indicator tag
			for(Storage::integer it = 0; it < EdgeLastLocalID(); ++it) if( isValidEdge(it) )
				coarse_indicator[EdgeByLocalID(it)] = 0;
			//b) each cell mark it's finer edges with cell's schedule
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( indicator[c] )
				{
					ElementArray<Element> adj = c.getAdjElements(EDGE);
					for(ElementArray<Element>::size_type kt = 0; kt < adj.size(); ++kt)
					{
						if( level[adj[kt]] > level[c] ) //only finer edges
							coarse_indicator[adj[kt]] = std::max(coarse_indicator[adj[kt]],indicator[c]);
					}
				}
			}
			//c) data reduction to get maximum over mesh partition
			ReduceData(coarse_indicator,EDGE,0,ReduceMax);
			//d) look from cells if any edge is coarsened earlier
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( indicator[c] )
				{
					ElementArray<Element> adj = c.getAdjElements(EDGE);
					for(ElementArray<Element>::size_type kt = 0; kt < adj.size(); ++kt)
					{
						if( level[c] == level[adj[kt]] && //do not look from coarse cell onto finer edge
						    indicator[c] <= coarse_indicator[adj[kt]])
						{
							indicator[c] = coarse_indicator[adj[kt]]+1;
							scheduled++;
						}
					}
				}
			}
			//5.Go back to 1 until no new elements scheduled
			scheduled = Integrate(scheduled);
			unscheduled = Integrate(unscheduled);
			if( scheduled ) schedule_counter++;
		}
		//cleanup
		coarse_indicator = DeleteTag(coarse_indicator);
		//Make schedule which elements should be refined earlier.
		BeginModification();
		while(schedule_counter)
		{
			//unite cells
			//should find and set hanging nodes on faces
			//find single node at the center, all other nodes,
			//adjacent over edge are hanging nodes
			for(Storage::integer it = 0; it < CellLastLocalID(); ++it) if( isValidCell(it) )
			{
				Cell c = CellByLocalID(it);
				if( !c.Hidden() && indicator[c] == schedule_counter )
				{
					//this set contains all the cells to be united
					ElementSet parent(this,parent_set[c]);
					ElementArray<Cell> unite_cells(this,parent.Size());
					//unmark indicator to prevent coarsement with next element
					Storage::integer kt = 0;
					for(ElementSet::iterator jt = parent.Begin(); jt != parent.End(); ++jt)
					{
						unite_cells[kt++] = jt->getAsCell();
						indicator[jt->self()] = 0; //prevent algorithm from visiting again
					}
					//find a node common to all the cells
					ElementArray<Node> center_node = unite_cells[0].getNodes();
					for(kt = 1; kt < unite_cells.size(); ++kt)
						center_node.Intersect(unite_cells[kt].getNodes());
					//only one should be found
					assert(center_node.size() == 1);
					ElementArray<Node> hanging = center_node[0].BridgeAdjacencies2Node(EDGE);
					Cell v = Cell::UniteCells(unite_cells,0);
					//connect hanging nodes to the cell
					assert(hanging_nodes[v].size() == 0);
					for(ElementArray<Node>::size_type kt = 0; kt < hanging.size(); ++kt)
						hanging_nodes[v].push_back(hanging[kt]);
					//set new parent
					parent_set[v] = parent.GetParent().GetHandle();
					//add cell to parent set
					ElementSet(this,parent_set[v]).PutElement(v);
					//set level for new cell
					level[v] = level[c]-1;
					//delete set that contained cells
					//tree structure should be resolved on ApplyModification
					parent.DeleteSet();
					//increment number of coarsened cells
					ret++;
				}
			}
			//unite faces
			//should find and set hanging nodes on edges
			//find single node at the center, all other nodes,
			//adjacent over edge of the face are hanging nodes
			int numcoarsened = 0;
			for(Storage::integer it = 0; it < FaceLastLocalID(); ++it) if( isValidFace(it) )
			{
				Face f = FaceByLocalID(it);
				if( !f.Hidden() && indicator[f] == schedule_counter )
				{
					//one (or both) of the adjacent cells were coarsened and has lower level
					bool visited = false;
					ElementArray<Cell> cells = f.getCells();
					for(ElementArray<Cell>::size_type kt = 0; kt < cells.size(); ++kt)
					{
						assert(level[cells[kt]] < level[f]);
					}
					for(ElementArray<Cell>::size_type kt = 0; kt < cells.size(); ++kt)
					{
						if( level[cells[kt]] < level[f] )
						{
							//cell has one hanging node in common with current face
							ElementArray<Node> nodes = f.getNodes();
							Storage::reference_array search_hanging = hanging_nodes[cells[kt]];
							nodes.Intersect(search_hanging.data(),search_hanging.size());
							assert(nodes.size() == 1);
							//faces that hanging node shares with the cell are
							//those to be united
							ElementArray<Face> unite_faces = cells[kt].getFaces();
							unite_faces.Intersect(nodes[0].getFaces());
							//unmark faces to prevent visit
							for(ElementArray<Face>::size_type lt = 0; lt < unite_faces.size(); ++lt)
								indicator[unite_faces[lt]] = 0;
							//nodes connected by edges to hanging node and
							//common to the cell are hanging nodes on edges
							ElementArray<Node> hanging = cells[kt].getNodes();
							hanging.Intersect(nodes[0].BridgeAdjacencies(EDGE,NODE));
							//unite faces
							Face v = Face::UniteFaces(unite_faces,0);
							//set level for new face
							level[v] = level[f]-1;
							//connect new face to hanging nodes
							for(ElementArray<Node>::size_type lt = 0; lt < hanging.size(); ++lt)
								hanging_nodes[v].push_back(hanging[lt]);
							visited = true;
							numcoarsened++;
							break; //no need to visit the other cell
						}
					}
					assert(visited);
				}
			}
			//unite edges
			for(Storage::integer it = 0; it < EdgeLastLocalID(); ++it) if( isValidEdge(it) )
			{
				Edge e = EdgeByLocalID(it);
				if( !e.Hidden() && indicator[e] == schedule_counter )
				{
					//at least one face must have lower level
					bool visited = false;
					ElementArray<Face> faces = e.getFaces();
					for(ElementArray<Face>::size_type kt = 0; kt < faces.size(); ++kt)
					{
						if( level[faces[kt]] < level[e] )
						{
							//face has one hanging node in common with current edge
							ElementArray<Node> nodes = e.getNodes();
							Storage::reference_array search_hanging = hanging_nodes[faces[kt]];
							nodes.Intersect(search_hanging.data(),search_hanging.size());
							assert(nodes.size() == 1);
							//edges that hanging node shares with the face are those to
							//be united
							ElementArray<Edge> unite_edges = faces[kt].getEdges();
							unite_edges.Intersect(nodes[0].getEdges());
							//unmark edges to prevent visit
							for(ElementArray<Edge>::size_type lt = 0; lt < unite_edges.size(); ++lt)
								indicator[unite_edges[lt]] = 0;
							//unite edges
							Edge v = Edge::UniteEdges(unite_edges,0);
							//set level for new edge
							level[v] = level[e]-1;
							visited = true;
							break; //no need to visit any other face
						}
					}
					assert(visited);
				}
			}
			//jump to later schedule
639
			//ExchangeData(hanging_nodes,CELL | FACE,0);
640 641 642 643 644
			schedule_counter--;
		}
		//free created tag
		DeleteTag(indicator,FACE|EDGE);
		//todo:
645 646
		ResolveShared(true);
		ResolveModification();
647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
		//todo:
		//let the user update their data
		ApplyModification();
		//done
		EndModification();
		//cleanup null links to hanging nodes
		for(ElementType etype = FACE; etype <= CELL; etype = NextElementType(etype))
		{
			for(Storage::integer it = 0; it < LastLocalID(etype); ++it) if( isValidElement(etype,it) )
			{
				Storage::reference_array arr = hanging_nodes[ElementByLocalID(etype,it)];
				Storage::reference_array::size_type jt = 0;
				for(Storage::reference_array::size_type kt = 0; kt < arr.size(); ++kt)
					if( arr[kt] != InvalidElement() ) arr[jt++] = arr[kt];
				arr.resize(jt);
			}
		}
		//cleanup null links in sets
		CleanupSets(root);
		//reorder element's data to free up space
		ReorderEmpty(CELL|FACE|EDGE|NODE|ESET);
		
		call_counter++;
		return ret != 0;
	}
672
}