geometry.cpp 41.4 KB
Newer Older
Kirill Terekhov's avatar
Kirill Terekhov committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
#include "inmost.h"
#if defined(USE_MESH)


namespace INMOST
{
	
	__INLINE static void vec_diff(const Storage::real * vecin1, const Storage::real * vecin2, Storage::real * vecout, unsigned int size)
	{
		for(unsigned int i = 0; i < size; i++)
			vecout[i] = vecin1[i] - vecin2[i];
	}
	
	__INLINE static void vec_cross_product(const Storage::real * vecin1, const Storage::real * vecin2, Storage::real * vecout)
	{
		Storage::real temp[3];
		temp[0] = vecin1[1]*vecin2[2] - vecin1[2]*vecin2[1];
		temp[1] = vecin1[2]*vecin2[0] - vecin1[0]*vecin2[2];
		temp[2] = vecin1[0]*vecin2[1] - vecin1[1]*vecin2[0];
		vecout[0] = temp[0];
		vecout[1] = temp[1];
		vecout[2] = temp[2];
	}
	
	__INLINE static Storage::real vec_dot_product(const Storage::real * vecin1,const Storage::real * vecin2, unsigned int size)
	{
		Storage::real ret = 0;
		for(unsigned int i = 0; i < size; i++)
			ret += vecin1[i]*vecin2[i];
		return ret;
	}
	
	__INLINE static Storage::real vec_len2(const Storage::real * vecin, unsigned int size)
	{
		return vec_dot_product(vecin,vecin,size);
	}
	
	__INLINE static Storage::real vec_len(const Storage::real * vecin, unsigned int size)
	{
		return sqrt(vec_len2(vecin,size));
	}
	
	__INLINE static Storage::real det3d(Storage::real a, Storage::real b, Storage::real c,
	                         Storage::real d, Storage::real e, Storage::real f,
	                         Storage::real g, Storage::real h, Storage::real i ) 
	{
		return a*e*i - c*e*g + b*f*g - a*f*h + c*d*h - b*d*i;
	}
	
	__INLINE static Storage::real det3v(const Storage::real * x,const Storage::real * y,const Storage::real * z) 
	{
		return det3d(x[0], x[1], x[2],  y[0], y[1], y[2],  z[0], z[1], z[2]);
	}
	
	__INLINE static Storage::real det4v(const Storage::real * w, const Storage::real * x, const Storage::real * y, const Storage::real * z) 
	{
		return det3d(x[0]-w[0], x[1]-w[1], x[2]-w[2],  y[0]-w[0], y[1]-w[1], y[2]-w[2],  z[0]-w[0], z[1]-w[1], z[2]-w[2]);
	}	
	
	
	__INLINE static Storage::real vec_normalize(Storage::real * vecin, unsigned int size)
	{
		Storage::real len = 0;
		for(unsigned int i = 0; i < size; i++)
			len += vecin[i]*vecin[i];
		len = sqrt(len);
		for(unsigned int i = 0; i < size; i++)
			vecin[i] /= len;
		return len;
	}
	
	
	adjacent<Cell> Cell::NeighbouringCells()
	{
		adjacent<Cell> ret;
		adjacent<Face> faces = getFaces();
		for(adjacent<Face>::iterator f = faces.begin(); f != faces.end(); f++)
		{
			Cell * c = Neighbour(&*f);
			if( c != NULL ) ret.push_back(c);
		}
		return ret;
	}
	
	
	Cell * Cell::Neighbour(Face * f)
	{
		Cell * b = f->BackCell();
		if( b == this )
			return f->FrontCell();
		return b;
	}
	
	bool Cell::Inside(Storage::real * point) //check for 2d case
	{
		unsigned int dim = GetMeshLink()->GetDimensions();
		unsigned int vp = 0, vm = 0, vz = 0;
		Storage::real eps = GetMeshLink()->GetEpsilon();
		real c,d;
		if( dim != 3 ) throw UndefinedBehaviorInGeometry; 
		adjacent<Element> elements = getAdjElements(GetElementType()>>1);
		for(adjacent<Element>::iterator f = elements.begin(); f != elements.end(); f++)
		{
			d = 0.0;
			adjacent<Node> nodes = f->getNodes();
			for (unsigned int i=1; i<nodes.size()-1; i++) 
Kirill Terekhov's avatar
Kirill Terekhov committed
107
				d += c = det4v(point, nodes[0].Coords().data(), nodes[i].Coords().data(), nodes[i+1].Coords().data());
Kirill Terekhov's avatar
Kirill Terekhov committed
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
			if (f->getAsFace()->FaceOrientedOutside(this) == 0)  c = -1.0;  else c = 1.0;
			if (c*d > eps)  vp++;  else if (c*d < eps)  vm++;  else  vz++;
		}
		if (vp*vm > 0)  return false;
		return true;
	}
	
	
	void Face::UnitNormal(Storage::real * nrm) 
	{
		m_link->GetGeometricData(this,NORMAL,nrm); 
		unsigned dim = GetMeshLink()->GetDimensions(); 
		Storage::real l = sqrt(vec_dot_product(nrm,nrm,dim)); 
		if( fabs(l) > GetMeshLink()->GetEpsilon()) 
			for(unsigned i = 0; i < dim; i++) 
				nrm[i] /= l; 
	}
	
	void Face::OrientedNormal(Cell * c, Storage::real * nrm) 
	{
		Normal(nrm); 
		if( !FaceOrientedOutside(c) ) 
			for(unsigned i = 0; i < GetMeshLink()->GetDimensions(); i++) 
				nrm[i] = -nrm[i];
	}
	
	
	void Face::OrientedUnitNormal(Cell * c, Storage::real * nrm) 
	{
		UnitNormal(nrm); 
		if( !FaceOrientedOutside(c) ) 
			for(unsigned i = 0; i < GetMeshLink()->GetDimensions(); i++) 
				nrm[i] = -nrm[i];
	}
	
	typedef dynarray< std::pair<Element *,int> ,64> find_and_add_type;
	//~ typedef std::vector< std::pair<Element *,int> > find_and_add_type;
	
	
	__INLINE void find_and_add(find_and_add_type & array, Element * e)
	{
		bool flag = false;
		for(find_and_add_type::iterator it = array.begin(); it != array.end(); it++)
			if( it->first == e ) 
			{
				flag = true;
				it->second++;
				break;
			}
		if( !flag ) array.push_back( std::pair<Element *,int>(e,1) );
	}
	
	
	
	bool Mesh::TestClosure(Element ** elements, unsigned num)
	{
		unsigned int i;
		find_and_add_type e_visit;
		find_and_add_type::iterator it;
		if( !HideMarker() )
		{
			for(i = 0; i < num; i++)
			{
Kirill Terekhov's avatar
Kirill Terekhov committed
171
				for(Element::adj_iterator jt = elements[i]->LowConn().begin(); jt!= elements[i]->LowConn().end()	; jt++)
Kirill Terekhov's avatar
Kirill Terekhov committed
172
173
174
175
176
177
178
					find_and_add(e_visit,*jt);
			}
		}
		else
		{
			for(i = 0; i < num; i++) if( !elements[i]->GetMarker(HideMarker()) )
			{
Kirill Terekhov's avatar
Kirill Terekhov committed
179
				for(Element::adj_iterator jt = elements[i]->LowConn().begin(); jt!= elements[i]->LowConn().end()	; jt++) if( !(*jt)->GetMarker(HideMarker()) )
Kirill Terekhov's avatar
Kirill Terekhov committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
					find_and_add(e_visit,*jt);
			}
		}
		for(it = e_visit.begin(); it != e_visit.end(); it++)
			if( it->second != 2 ) return false;
		return true;
	}
	
	Element::GeometricType Mesh::ComputeGeometricType(ElementType etype, Element ** lc, INMOST_DATA_ENUM_TYPE s)
	{
		Element::GeometricType ret = Element::Unset;
		if( s == 0 && etype != NODE) return ret;
		switch(etype)
		{
			case NODE: ret = Element::Vertex; break;
			case EDGE:
				if( s == 1 )
					ret = Element::Vertex;
				else if( s == 2 )
					ret = Element::Line;
				break;
			case FACE:
				if( lc[0]->GetElementDimension() == 0 )
				{ 
					ret = Element::Line;
				}
				else
				{
					if( !GetTopologyCheck(NEED_TEST_CLOSURE) || TestClosure(lc,s) )
					{
						if( s == 3 )
							ret = Element::Tri;
						else if( s == 4 )
							ret = Element::Quad;
						else
							ret = Element::Polygon;
					}
					else ret = Element::MultiLine;
				}
				break;
			case CELL:
				if( lc[0]->GetElementDimension() == 1 )
				{
Kirill Terekhov's avatar
Kirill Terekhov committed
223
					if( !GetTopologyCheck(NEED_TEST_CLOSURE) || TestClosure(lc,s) )
Kirill Terekhov's avatar
Kirill Terekhov committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
					{
						if( s == 3 )
							ret = Element::Tri;
						else if( s == 4 )
							ret = Element::Quad;
						else
							ret = Element::Polygon;
					}
					else ret = Element::MultiLine;
				}
				else 
				{
					if( !GetTopologyCheck(NEED_TEST_CLOSURE) ||  TestClosure(lc,s) )
					{
						//test c_faces closure, if no closure, set as MultiPolygon
						INMOST_DATA_ENUM_TYPE quads = 0,tris = 0,i;
						for(i = 0; i < s; i++)
						{
							if( lc[i]->GetGeometricType() == Element::Tri )
								tris++;
							else if( lc[i]->GetGeometricType() == Element::Quad )
								quads++;
						}
						if( tris == 4 && s == 4 )
							ret = Element::Tet;
						else if( quads == 6 && s == 6 )
							ret = Element::Hex;
						else if( tris == 4 && quads == 1 && s == tris+quads)
							ret = Element::Pyramid;
						else if( quads == 3 && tris == 2 && s == tris+quads)
							ret = Element::Prism;
						else
							ret = Element::Polyhedron;
					}
					else ret = Element::MultiPolygon;
				}
				break;
			case ESET: ret = Element::Set; break;
		}
		return ret;
	}

	void Element::ComputeGeometricType()
	{
Kirill Terekhov's avatar
Kirill Terekhov committed
268
		SetGeometricType(Unset);
Kirill Terekhov's avatar
Kirill Terekhov committed
269
		adjacent<Element> lc = getAdjElements(GetElementType() >> 1);
Kirill Terekhov's avatar
Kirill Terekhov committed
270
		if( !lc.empty() )
Kirill Terekhov's avatar
Kirill Terekhov committed
271
			SetGeometricType(GetMeshLink()->ComputeGeometricType(GetElementType(),lc.data(),lc.size()));
Kirill Terekhov's avatar
Kirill Terekhov committed
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
		/*
		if( lc.size() == 0 && etypenum != 0) return;
		switch(etypenum)
		{
			case 0: m_type = Vertex; break;
			case 1:
				if( lc.size() == 1 )
					m_type = Vertex;
				else if( lc.size() == 2 )
					m_type = Line;
				break;
			case 2:
				if( lc[0].GetElementDimension() == 0 )
				{ 
					m_type = Line;
				}
				else
				{
					if( GetMeshLink()->TestClosure(lc.data(),lc.size()) )
					{
						if( lc.size() == 3 )
							m_type = Tri;
						else if( lc.size() == 4 )
							m_type = Quad;
						else
							m_type = Polygon;
					}
					else m_type = MultiLine;
				}
				break;
			case 3:
				if( lc[0].GetElementDimension() == 1 )
				{
					if( GetMeshLink()->TestClosure(lc.data(),lc.size()) )
					{
						if( lc.size() == 3 )
							m_type = Tri;
						else if( lc.size() == 4 )
							m_type = Quad;
						else
							m_type = Polygon;
					}
					else m_type = MultiLine;
				}
				else 
				{
					if( GetMeshLink()->TestClosure(lc.data(),lc.size()) )
					{
						//test c_faces closure, if no closure, set as MultiPolygon
						unsigned int quads = 0,tris = 0;
						for(unsigned i = 0; i < lc.size(); i++)
						{
							if( lc[i].GetGeometricType() == Tri )
								tris++;
							else if( lc[i].GetGeometricType() == Quad )
								quads++;
						}
						if( tris == 4 && lc.size() == 4 )
							m_type = Tet;
						else if( quads == 6 && lc.size() == 6 )
							m_type = Hex;
						else if( tris == 4 && quads == 1 && lc.size() == tris+quads)
							m_type = Pyramid;
						else if( quads == 3 && tris == 2 && lc.size() == tris+quads)
							m_type = Prism;
						else
							m_type = Polyhedron;
					}
					else m_type = MultiPolygon;
				}
				break;
			case 4: m_type = Set; break;
		}
		*/
	}
	
	
	void Mesh::RecomputeGeometricData(Element * e)
	{
		//static std::map<Element *, int> numfixes;
		GeometricData d ;
		for(d = CENTROID; d <= NORMAL; d++) // first compute centroids and normals 
		{
			if( HaveGeometricData(d,e->GetElementType()) ) //compute centroid first
			{
				Tag t = GetGeometricTag(d);
				Storage::real * a = &e->RealDF(t);
				HideGeometricData(d,e->GetElementType());
				GetGeometricData(e,d,a);
				ShowGeometricData(d,e->GetElementType());
			}
		}


		if( e->GetElementType() == CELL && HaveGeometricData(ORIENTATION,FACE)) //then correct the normal
		{
Kirill Terekhov's avatar
Kirill Terekhov committed
368
369
			for(Element::adj_iterator it = e->LowConn().begin(); it != e->LowConn().end(); ++it)
				if( !(*it)->GetMarker(HideMarker()) && (*it)->HighConn().size() == 1 )
Kirill Terekhov's avatar
Kirill Terekhov committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
				{
					(*it)->getAsFace()->FixNormalOrientation();
				}
		}
		for(d = MEASURE; d <= BARYCENTER; d++) // compute the rest
		{
			if( HaveGeometricData(d,e->GetElementType()) )
			{
				Tag t = GetGeometricTag(d);
				Storage::real * a = &e->RealDF(t);
				HideGeometricData(d,e->GetElementType());
				GetGeometricData(e,d,a);
				ShowGeometricData(d,e->GetElementType());
			}
		}
	}
	
	
	void Mesh::RemoveGeometricData(GeomParam table)
	{
		for(GeomParam::iterator it = table.begin(); it != table.end(); ++it)
		{
			if( it->first == MEASURE    ) 
			{
				if(measure_tag.isValid())    
					measure_tag    = DeleteTag(measure_tag   ,it->second);
				for(ElementType etype = EDGE; etype <= CELL; etype = etype << 1) if( etype & it->second) HideGeometricData(MEASURE,etype);
			}
			if( it->first == CENTROID   ) 
			{
				if(centroid_tag.isValid())   
					centroid_tag   = DeleteTag(centroid_tag  ,it->second);
				for(ElementType etype = EDGE; etype <= CELL; etype = etype << 1) if( etype & it->second) HideGeometricData(CENTROID,etype);
			}
			if( it->first == BARYCENTER ) 
			{
				if(barycenter_tag.isValid()) 
					barycenter_tag = DeleteTag(barycenter_tag,it->second);
				for(ElementType etype = EDGE; etype <= CELL; etype = etype << 1) if( etype & it->second) HideGeometricData(BARYCENTER,etype);
			}
			if( it->first == NORMAL     ) 
			{
				if(normal_tag.isValid())
					normal_tag     = DeleteTag(normal_tag    ,it->second);
				for(ElementType etype = FACE; etype <= CELL; etype = etype << 1) if( etype & it->second) HideGeometricData(NORMAL,etype);
			}
			if( it->first == ORIENTATION) 
				if( FACE & it->second) HideGeometricData(ORIENTATION,FACE);
		}
	}
	
	void Mesh::RestoreGeometricTags()
	{
		for(GeometricData gtype = MEASURE; gtype <= NORMAL; gtype++)
		{
			bool restore = false;
			for(ElementType etype = EDGE; etype <= CELL && !restore; etype = etype << 1)
				if( HaveGeometricData(gtype,etype) )
					restore = true;
			if( restore )
			{
				switch(gtype)
				{
				case MEASURE:       measure_tag = GetTag("GEOM_UTIL_MEASURE");    break;
				case CENTROID:     centroid_tag = GetTag("GEOM_UTIL_CENTROID");   break;
				case BARYCENTER: barycenter_tag = GetTag("GEOM_UTIL_BARYCENTER"); break;
				case NORMAL:         normal_tag = GetTag("GEOM_UTIL_NORMAL");     break;
				}
			}
		}
	}
	
	void Mesh::PrepareGeometricData(GeomParam table)
	{
		for(GeomParam::iterator it = table.begin(); it != table.end(); ++it)
		{
			GeometricData types = it->first;
			ElementType mask = it->second;
			if( types == ORIENTATION )
			{
				if( mask & FACE )
					for(Mesh::iteratorFace e = BeginFace(); e != EndFace(); ++e) 
						e->FixNormalOrientation();
				ShowGeometricData(ORIENTATION,FACE);
			}
			if( types == MEASURE )
			{
				for(ElementType etype = EDGE; etype <= CELL; etype = etype << 1)
				{
					if( (mask & etype) && !HaveGeometricData(MEASURE,etype))
					{
						measure_tag = CreateTag("GEOM_UTIL_MEASURE",DATA_REAL,etype,NONE,1);
						for(Mesh::iteratorElement e = BeginElement(etype); e != EndElement(); ++e)
							GetGeometricData(&*e,MEASURE,&e->RealDF(measure_tag));
						ShowGeometricData(MEASURE,etype);
					}
				}
			}
			if( types == CENTROID )
			{
				for(ElementType etype = EDGE; etype <= CELL; etype = etype << 1)
				{
					if( (mask & etype) && !HaveGeometricData(CENTROID,etype))
					{
						centroid_tag = CreateTag("GEOM_UTIL_CENTROID",DATA_REAL,etype,NONE,GetDimensions());
Kirill Terekhov's avatar
Kirill Terekhov committed
475
476
477
478
479
						for(INMOST_DATA_INTEGER_TYPE k = 0; k < MaxLocalID(etype); ++k)
						{
							Element * e = ElementByLocalID(etype,k);
							if( e != NULL ) GetGeometricData(e,CENTROID,&e->RealDF(centroid_tag));
						}
Kirill Terekhov's avatar
Kirill Terekhov committed
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
						ShowGeometricData(CENTROID,etype);
					}
				}
			}
			if( types == BARYCENTER )
			{
				for(ElementType etype = EDGE; etype <= CELL; etype = etype << 1)
				{
					if( (mask & etype) && !HaveGeometricData(BARYCENTER,etype))
					{
						barycenter_tag = CreateTag("GEOM_UTIL_BARYCENTER",DATA_REAL,etype,NONE,GetDimensions());
						for(Mesh::iteratorElement e = BeginElement(etype); e != EndElement(); ++e)
							GetGeometricData(&*e,BARYCENTER,&e->RealDF(barycenter_tag));
						ShowGeometricData(BARYCENTER,etype);
					}
				}	
			}
			if( types == NORMAL )
			{
				for(ElementType etype = FACE; etype <= CELL; etype = etype << 1)
					if( (mask & etype) && !HaveGeometricData(NORMAL,etype))
					{
						normal_tag = CreateTag("GEOM_UTIL_NORMAL",DATA_REAL,etype,NONE,GetDimensions());
						for(Mesh::iteratorElement e = BeginElement(etype); e != EndElement(); ++e)
							GetGeometricData(&*e,NORMAL,&e->RealDF(normal_tag));
						ShowGeometricData(NORMAL,etype);
					}
			}
		}
	}
	
	void Mesh::GetGeometricData(Element * e, GeometricData type, Storage::real * ret)
	{
		ElementType etype = e->GetElementType();
		INMOST_DATA_ENUM_TYPE edim = e->GetElementDimension();
		INMOST_DATA_ENUM_TYPE mdim = GetDimensions();
		switch(type)
		{
			case MEASURE:
			if( HaveGeometricData(MEASURE,etype) )
			{
				*ret = e->RealDF(measure_tag);
				//~ if( isnan(*ret) || fabs(*ret) < 1e-15  ) throw -1;
			}
			else
			{
				switch(edim)
				{
					case 0: *ret = 0; break;
					case 1: //length of edge
					{
						adjacent<Node> nodes = e->getNodes();
						Storage::real c[3];
Kirill Terekhov's avatar
Kirill Terekhov committed
533
						vec_diff(nodes[0].Coords().data(),nodes[1].Coords().data(),c,mdim);
Kirill Terekhov's avatar
Kirill Terekhov committed
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
						*ret = vec_len(c,mdim);
						//~ if( isnan(*ret) || fabs(*ret) < 1e-15  ) throw -1;
						break;
					}
					case 2: //area of face
					{
						adjacent<Node> nodes = e->getNodes();
						real x[3] = {0,0,0};
						Storage::real_array x0 = nodes[0].Coords();
						for(unsigned i = 1; i < nodes.size()-1; i++)
						{
							Storage::real_array v1 = nodes[i].Coords();
							Storage::real_array v2 = nodes[i+1].Coords();
							if( mdim == 3 )
							{
								x[0] += (v1[1]-x0[1])*(v2[2]-x0[2]) - (v1[2]-x0[2])*(v2[1]-x0[1]);
								x[1] += (v1[2]-x0[2])*(v2[0]-x0[0]) - (v1[0]-x0[0])*(v2[2]-x0[2]);
							}
							x[2] += (v1[0]-x0[0])*(v2[1]-x0[1]) - (v1[1]-x0[1])*(v2[0]-x0[0]);
						}
						*ret = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2])*0.5;
						//~ if( isnan(*ret) || fabs(*ret) < 1e-15  ) throw -1;
						break;
					}
					case 3: //volume of cell
					{
						adjacent<Face> faces = e->getFaces();
						*ret = 0;
						/*
						Storage::real d;
						for(unsigned i = 0; i < faces.size(); i++)
						{
							d = 0;
							adjacent<Node> nodes = faces[i].getNodes();
							Storage::real_array a = nodes[0].Coords();
							for(unsigned j = 1; j < nodes.size()-1; j++)
							{
								Storage::real_array b = nodes[j].Coords();
								Storage::real_array c = nodes[j+1].Coords();
								d += det3v(&a[0],&b[0],&c[0]);
							}
							*ret += (2*faces[i].FaceOrientedOutside(e->getAsCell())-1)*d;
						}
						*ret /= 6.0;
						*/
						Storage::real fcnt[3], fnrm[3];// , area;
						for(unsigned i = 0; i < faces.size(); i++)
						{
							faces[i].Centroid(fcnt);
							faces[i].OrientedNormal(e->getAsCell(),fnrm);
							/*
							area = sqrt(vec_dot_product(fnrm,fnrm,mdim));
							if( area > 0 )
							{
								fnrm[0] /= area;
								fnrm[1] /= area;
								fnrm[2] /= area;
								*ret += vec_dot_product(fcnt,fnrm,mdim) * area;
							}
							*/
							*ret += vec_dot_product(fcnt,fnrm,mdim);
						}
						*ret /= 3.0;
						/*
						if( *ret < 0  || (*ret) != (*ret) )
						{
							Storage::real test = 0;
							
							
							//~ Storage::real fcnt[3], fnrm[3], area;
							for(unsigned i = 0; i < faces.size(); i++)
							{
								if( faces[i].FixNormalOrientation() ) std::cout << faces[i].LocalID() << " normal refixed " << faces[i].nbAdjElements(CELL) << std::endl;
								//~ faces[i].Centroid(fcnt);
								//~ faces[i].OrientedNormal(e->getAsCell(),fnrm);
								//~ area = sqrt(vec_dot_product(fnrm,fnrm,mdim));
								//~ fnrm[0] /= area;
								//~ fnrm[1] /= area;
								//~ fnrm[2] /= area;
								//~ test += vec_dot_product(fcnt,fnrm,mdim) * area / 3.0;
							}
							
							//~ e->Centroid(fcnt);
							
							Storage::real d;
							for(unsigned i = 0; i < faces.size(); i++)
							{
								d = 0;
								adjacent<Node> nodes = faces[i].getNodes();
								Storage::real_array a = nodes[0].Coords();
								for(unsigned j = 1; j < nodes.size()-1; j++)
								{
									Storage::real_array b = nodes[j].Coords();
									Storage::real_array c = nodes[j+1].Coords();
									d += det3v(&a[0],&b[0],&c[0]);
								}
								test += (2*faces[i].FaceOrientedOutside(e->getAsCell())-1)*d;
							}
							test /= 6.0;
						
						
							std::cout << "alg1 " << *ret << " alg2 " << test << " on " << Element::GeometricTypeName(e->GetGeometricType()) << " " << e->GlobalID() << " " << e->LocalID() << std::endl;
							//e->Integer(tag_topologyerror) = 1;
						}
						*/
						//~ if( *ret < 0 )
						//~ {
							//~ std::cout << "negative volume! " << *ret << std::endl;
							//~ std::cout << "element " << Element::GeometricTypeName(e->GetGeometricType()) << " faces " << faces.size() << std::endl;
							//~ *ret = 0;
							//~ for(unsigned i = 0; i < faces.size(); i++)
							//~ {
								//~ std::cout << "face " << i << "/" << faces.size() << std::endl;
								//~ d = 0;
								//~ adjacent<Node> nodes = faces[i].getNodes();
								//~ Storage::real_array a = nodes[0].Coords();
								//~ std::cout << "node 0 " << a[0] << " " << a[1] << " " << a[2] << " id " << nodes[0].LocalID() << std::endl; 
								//~ for(unsigned j = 1; j < nodes.size()-1; j++)
								//~ {
									//~ Storage::real_array b = nodes[j].Coords();
									//~ std::cout << "node " << j << " " << b[0] << " " << b[1] << " " << b[2] << " id " << nodes[j].LocalID() << std::endl;
									//~ Storage::real_array c = nodes[j+1].Coords();
									//~ d += det3v(&a[0],&b[0],&c[0]);
								//~ }
								//~ a = nodes[nodes.size()-1].Coords();
								//~ std::cout << "node " << nodes.size()-1 << " " << a[0] << " " << a[1] << " " << a[2] << " id " << nodes[nodes.size()-1].LocalID() << std::endl; 
								//~ std::cout << "d = " << d << std::endl;
								//~ std::cout << "orientation = " << (2*faces[i].FaceOrientedOutside(e->getAsCell())-1) << std::endl;
								//~ Storage::real old = *ret, add = (2*faces[i].FaceOrientedOutside(e->getAsCell())-1)*d;
								//~ *ret = old + add;
								//~ std::cout << old << " + " << add << " = " << *ret << std::endl;
							//~ }
							//~ std::cout << "result " << *ret/6.0 << std::endl;
							//~ std::cout << "trying with fix " << std::endl;
							//~ *ret = 0;
							//~ for(unsigned i = 0; i < faces.size(); i++)
							//~ {
								//~ std::cout << "face " << i << "/" << faces.size() << " fixed " << faces[i].FixNormalOrientation() << " cells " << faces[i].nbAdjElements(CELL) << std::endl;
								//~ d = 0;
								//~ adjacent<Node> nodes = faces[i].getNodes();
								//~ Storage::real_array a = nodes[0].Coords();
								//~ std::cout << "node 0 " << a[0] << " " << a[1] << " " << a[2] << " id " << nodes[0].LocalID() << std::endl; 
								//~ for(unsigned j = 1; j < nodes.size()-1; j++)
								//~ {
									//~ Storage::real_array b = nodes[j].Coords();
									//~ std::cout << "node " << j << " " << b[0] << " " << b[1] << " " << b[2] << " id " << nodes[j].LocalID() << std::endl;
									//~ Storage::real_array c = nodes[j+1].Coords();
									//~ d += det3v(&a[0],&b[0],&c[0]);
								//~ }
								//~ a = nodes[nodes.size()-1].Coords();
								//~ std::cout << "node " << nodes.size()-1 << " " << a[0] << " " << a[1] << " " << a[2] << " id " << nodes[nodes.size()-1].LocalID() << std::endl; 
								//~ std::cout << "d = " << d << std::endl;
								//~ std::cout << "orientation = " << (2*faces[i].FaceOrientedOutside(e->getAsCell())-1) << std::endl;
								//~ Storage::real old = *ret, add = (2*faces[i].FaceOrientedOutside(e->getAsCell())-1)*d;
								//~ *ret = old + add;
								//~ std::cout << old << " + " << add << " = " << *ret << std::endl;
							//~ }
							//~ std::cout << "result " << *ret/6.0 << std::endl;
						//~ }
						
						//~ if( isnan(*ret) || fabs(*ret) < 1e-15  ) throw -1;
						break;
					}
				}
				//~ throw -1;
				//~ if( (*ret) != (*ret) || *ret < 0  ) 
				//~ {
					//~ std::cout << "bad measure: " << *ret << " for " << ElementTypeName(e->GetElementType()) << " " << Element::GeometricTypeName(e->GetGeometricType()) << " edim " << edim << std::endl;
					//~ 
				//~ }
				
			}
			//~ if( isnan(*ret) || fabs(*ret) < 1e-15  ) throw -1;
			break;
			case CENTROID:
			if(etype == NODE )
Kirill Terekhov's avatar
Kirill Terekhov committed
710
				memcpy(ret,e->getAsNode()->Coords().data(),sizeof(real)*mdim);
Kirill Terekhov's avatar
Kirill Terekhov committed
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
			else if(HaveGeometricData(CENTROID,etype))
			{
				memcpy(ret,&e->RealDF(centroid_tag),sizeof(real)*mdim);
			}
			else
			{
				adjacent<Node> nodes = e->getNodes();
				Storage::real div = 1.0/nodes.size();
				memset(ret,0,sizeof(real)*mdim);
				assert(nodes.size() != 0);
				for(unsigned i = 0; i < nodes.size(); i++)
				{
					Storage::real_array c =nodes[i].Coords();
					for(unsigned j = 0; j < mdim; j++) ret[j] += c[j];
				}
				for(unsigned j = 0; j < mdim; j++) ret[j] *= div;
			}
			break;
			case BARYCENTER:
			if( etype == NODE )
Kirill Terekhov's avatar
Kirill Terekhov committed
731
				memcpy(ret,e->getAsNode()->Coords().data(),sizeof(real)*mdim);
Kirill Terekhov's avatar
Kirill Terekhov committed
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
			else if(HaveGeometricData(BARYCENTER,etype))
				memcpy(ret,&e->RealDF(barycenter_tag),sizeof(real)*mdim);
			else
			{
				memset(ret,0,sizeof(real)*mdim);
				if( edim == 1 )
				{
					adjacent<Node> n = e->getNodes();
					Storage::real_array a = n[0].Coords();
					Storage::real_array b = n[1].Coords();
					for(unsigned j = 0; j < dim; j++) ret[j] = (a[j] + b[j])*0.5;
				}
				else if( edim == 2 )
				{
					adjacent<Node> nodes = e->getNodes();
					real s,d, x1[3] = {0,0,0},x2[3] = {0,0,0},x[3] = {0,0,0};
					//here we compute area of polygon
					//~ if( HaveGeometricData(MEASURE,etype) && HaveGeometricData(NORMAL,etype) )
					//~ {
						//~ s = e->RealDF(measure_tag);
						//~ memcpy(x,&e->RealDF(normal_tag),sizeof(Storage::real)*mdim);
					//~ }
					//~ else
					//~ {
						Storage::real_array x0 = nodes[0].Coords();
						for(unsigned i = 1; i < nodes.size()-1; i++)
						{
							Storage::real_array v1 = nodes[i].Coords();
							Storage::real_array v2 = nodes[i+1].Coords();
							if( mdim == 3 )
							{
								x[0] += (v1[1]-x0[1])*(v2[2]-x0[2]) - (v1[2]-x0[2])*(v2[1]-x0[1]);
								x[1] += (v1[2]-x0[2])*(v2[0]-x0[0]) - (v1[0]-x0[0])*(v2[2]-x0[2]);
							}
							x[2] += (v1[0]-x0[0])*(v2[1]-x0[1]) - (v1[1]-x0[1])*(v2[0]-x0[0]);
						}
						s = sqrt(x[0]*x[0]+x[1]*x[1]+x[2]*x[2]);
						x[0] /= s; x[1] /= s; x[2] /= s; //here we obtain the unit normal
					//~ }
					//here we compute the center
					Storage::real_array v0 = nodes[0].Coords();
					for(unsigned j = 1; j < nodes.size()-1; j++)
					{
						Storage::real_array v1 = nodes[j].Coords();
						Storage::real_array v2 = nodes[j+1].Coords();
						for(unsigned k = 0; k < mdim; k++)
						{
							x1[k] = v0[k] - v1[k];
							x2[k] = v0[k] - v2[k];
						}
						d = det3v(x1,x2,x); //here we use unit normal
						for(unsigned k = 0; k < mdim; k++) ret[k] += d*(v0[k]+v1[k]+v2[k]);
					}
					for(unsigned k = 0; k < mdim; k++) ret[k] /= 3.0 * s;
				}
				else if( edim == 3 )
				{
					adjacent<Face> faces = e->getFaces();
					real d,c,vol = 0, y[3];
					for(unsigned i = 0; i < faces.size(); i++)
					{
						d = y[0] = y[1] = y[2] = 0;
						adjacent<Node> nodes = faces[i].getNodes();
						Storage::real_array v0 = nodes[0].Coords();
						for(unsigned j = 1; j < nodes.size()-1; j++)
						{
							Storage::real_array v1 = nodes[j].Coords();
							Storage::real_array v2 = nodes[j+1].Coords();
Kirill Terekhov's avatar
Kirill Terekhov committed
800
							c = det3v(v0.data(),v1.data(),v2.data());
Kirill Terekhov's avatar
Kirill Terekhov committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
							d += c;
							y[0] += c * (v0[0] + v1[0] + v2[0]);
							y[1] += c * (v0[1] + v1[1] + v2[1]);
							y[2] += c * (v0[2] + v1[2] + v2[2]);
						}
						c = faces[i].FaceOrientedOutside(e->getAsCell()) ? 1 : -1;
						ret[0] += c * y[0];
						ret[1] += c * y[1];
						ret[2] += c * y[2];
						vol += c*d;
					}
					ret[0] /= vol*4;
					ret[1] /= vol*4;
					ret[2] /= vol*4;
				}
			}
			break;
			case NORMAL:
			if( HaveGeometricData(NORMAL,etype) )
Kirill Terekhov's avatar
Kirill Terekhov committed
820
				memcpy(ret,&e->RealDF(normal_tag),sizeof(real)*GetDimensions());
Kirill Terekhov's avatar
Kirill Terekhov committed
821
822
823
			else
			{
				memset(ret,0,sizeof(real)*mdim);
Kirill Terekhov's avatar
Kirill Terekhov committed
824
				if( edim == 2 )//&& mdim == 3)
Kirill Terekhov's avatar
Kirill Terekhov committed
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
				{
					adjacent<Node> nodes = e->getNodes();
					
					Storage::real_array x0 = nodes[0].Coords();
					for(unsigned i = 1; i < nodes.size()-1; i++)
					{
						Storage::real_array a = nodes[i].Coords();
						Storage::real_array b = nodes[i+1].Coords();
						ret[0] += (a[1]-x0[1])*(b[2]-x0[2]) - (a[2]-x0[2])*(b[1]-x0[1]);
						ret[1] += (a[2]-x0[2])*(b[0]-x0[0]) - (a[0]-x0[0])*(b[2]-x0[2]);
						ret[2] += (a[0]-x0[0])*(b[1]-x0[1]) - (a[1]-x0[1])*(b[0]-x0[0]);
					}
					/*
					for(unsigned i = 0; i < nodes.size(); i++)
					{
						Storage::real_array a = nodes[i].Coords();
						Storage::real_array b = nodes[(i+1)%nodes.size()].Coords();
						ret[0] += a[1]*b[2] - a[2]*b[1];
						ret[1] += a[2]*b[0] - a[0]*b[2];
						ret[2] += a[0]*b[1] - a[1]*b[0];
					}
					*/
					ret[0] *= 0.5;
					ret[1] *= 0.5;
					ret[2] *= 0.5;
				}
Kirill Terekhov's avatar
Kirill Terekhov committed
851
				else if( edim == 1 )//&& mdim == 2 )
Kirill Terekhov's avatar
Kirill Terekhov committed
852
853
854
855
856
				{
					adjacent<Node> nodes = e->getNodes();
					Storage::real_array a = nodes[0].Coords();
					Storage::real_array b = nodes[1].Coords();
					ret[0] = b[1] - a[1];
Kirill Terekhov's avatar
Kirill Terekhov committed
857
858
859
860
861
862
863
864
865
866
					ret[1] = a[0] - b[0];
					Storage::real l = sqrt(ret[0]*ret[0]+ret[1]*ret[1]);
					if( l )
					{
						ret[0] /= l;
						ret[1] /= l;
					}
					l = sqrt((a[0]-b[0])*(a[0]-b[0])+(a[1]-b[1])*(a[1]-b[1]));
					ret[0] *= l;
					ret[1] *= l;
Kirill Terekhov's avatar
Kirill Terekhov committed
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
				}
			}
			break;
		}
		//~ if( type == MEASURE )
		//~ {
			//~ if( isnan(*ret) || fabs(*ret) < 1e-15  ) throw -1;
		//~ }
	}
	


	bool Element::Planarity()
	{
		Mesh * m = GetMeshLink();
		unsigned int dim = m->GetDimensions();
		if( dim < 3 ) return true;
		adjacent<Node> p = getNodes();
		if( p.size() <= 3 ) return true;
		unsigned int i, s = p.size();
		Storage::real v[2][3] = {{0,0,0},{0,0,0}};
Kirill Terekhov's avatar
Kirill Terekhov committed
888
889
		vec_diff(p[1].Coords().data(),p[0].Coords().data(),v[0],3);
		vec_diff(p[2].Coords().data(),p[0].Coords().data(),v[1],3);
Kirill Terekhov's avatar
Kirill Terekhov committed
890
891
892
		vec_cross_product(v[0],v[1],v[1]);
		for(i = 3; i < s; i++)
		{
Kirill Terekhov's avatar
Kirill Terekhov committed
893
			vec_diff(p[i].Coords().data(),p[0].Coords().data(),v[0],3);
Kirill Terekhov's avatar
Kirill Terekhov committed
894
895
896
897
898
899
900
901
			if( fabs(vec_dot_product(v[0],v[1],3)) > m->GetEpsilon() ) return false;
		}
		return true;
	}


	bool Cell::Closure()
	{
Kirill Terekhov's avatar
Kirill Terekhov committed
902
		return LowConn().size() > 0 ? GetMeshLink()->TestClosure(LowConn().data(),LowConn().size()) : false;
Kirill Terekhov's avatar
Kirill Terekhov committed
903
904
905
906
	}

	bool Face::Closure()
	{
Kirill Terekhov's avatar
Kirill Terekhov committed
907
		return LowConn().size() > 0 ? GetMeshLink()->TestClosure(LowConn().data(),LowConn().size()) : false;
Kirill Terekhov's avatar
Kirill Terekhov committed
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
	}



	

	

	bool Element::Boundary()
	{
		switch(GetElementType())
		{
			case CELL: return false;
			case FACE:
				if( nbAdjElements(CELL) == 1 )
				{
					if( getAsFace()->BackCell()->GetStatus() != Element::Ghost )
						return true;
				}
				return false;
			case EDGE:
			case NODE:
			{
				adjacent<Element> faces = getAdjElements(FACE);
				for(adjacent<Element>::iterator it = faces.begin(); it != faces.end(); it++)
					if( it->Boundary() ) return true;
				return false;
			}
			default: return false;
		}
		return false;
	}
	
	
	bool Face::CheckNormalOrientation()
	{
		Mesh * m = GetMeshLink();
		unsigned dim = m->GetDimensions();
		Cell * c1 = BackCell();
		Cell * c2 = FrontCell();
		if( c1 != NULL )
		{
			Storage::real nf[3], cf[3],fc[3], cc[3], dot, dot2;
			UnitNormal(nf);
			Centroid(fc);
			c1->Centroid(cc);
			//~ if( !c->Inside(cc) ) std::cout << "centroid is outside of " << Element::GeometricTypeName(c->GetGeometricType()) << std::endl;
			vec_diff(cc,fc,cf,dim);
			vec_normalize(cf,dim);
			dot = vec_dot_product(nf,cf,dim);
			//~ c = FrontCell();
			if( fabs(dot) < 0.25 && c2 != NULL )
			{
				c2->Centroid(cc);
				vec_diff(cc,fc,cf,dim);
				vec_normalize(cf,dim);
				dot2 = vec_dot_product(nf,cf,dim);
				if( fabs(dot2) > fabs(dot) )
					dot = -dot2;
			}
			if( dot > 0 )
				return false;
		}
		return true;
	}
	
	bool Face::FixNormalOrientation()
	{
		if( !CheckNormalOrientation() )
		{	
			ReorderEdges();
			if( GetMeshLink()->HaveGeometricData(NORMAL,FACE) )
			{
				Storage::real_array nrm = RealArray(GetMeshLink()->GetGeometricTag(NORMAL));
				for(Storage::real_array::iterator it = nrm.begin(); it != nrm.end(); ++it) *it = -(*it);
			}
			return true;
		}
		return false;
	}

	Storage::real meantri(Storage::real * v0, Storage::real * v1, Storage::real * v2, unsigned dim, Storage::real (*func)(Storage::real* x,Storage::real), Storage::real time)
	{
		Storage::real value = 0;
		static const Storage::real w[4] =   { -0.149570044467670, 0.175615257433204, 0.053347235608839 , 0.077113760890257};
		static const Storage::real a[4][3] =
		{
			{0.333333333333333,0.333333333333333,0.333333333333333},
			{0.479308067841923,0.260345966079038,0.260345966079038},
			{0.869739794195568,0.065130102902216,0.065130102902216},
			{0.638444188569809,0.312865496004875,0.048690315425316}
		};
		Storage::real XYG[13][3];
		for (unsigned i = 0 ; i < dim; i++)
			XYG[0][i] = 0.33333333333333333333*(v0[i]+v1[i]+v2[i]);
		 value += w[0] * func(XYG[0],time);
		for (int i = 0 ; i < 3 ; i++ )
		{
			for (unsigned j = 0 ; j < dim; j++)
				XYG[1+i][j] = v0[j] + (v1[j] - v0[j]) * a[1][i] + (v2[j] - v0[j])*a[1][(i+1)%3];
			value += w[1] * func(XYG[1+i],time);
		}
		for (int i = 0 ; i < 3 ; i++ )
		{
			for (unsigned j = 0 ; j < dim; j++)
				XYG[4+i][j] = v0[j] + (v1[j] - v0[j]) * a[2][i] + (v2[j] - v0[j])*a[2][(i+1)%3];
			value += w[2] * func(XYG[4+i],time);
		}
		for (int i = 0 ; i < 3 ; i++ )
		{
			for (unsigned j = 0 ; j < dim; j++)
			{
				XYG[7+2*i][j] = v0[j] + (v1[j] - v0[j]) * a[3][i] + (v2[j] - v0[j])*a[3][(i+1)%3];
				XYG[8+2*i][j] = v0[j] + (v1[j] - v0[j]) * a[3][(i+1)%3] + (v2[j] - v0[j])*a[3][i];
			}
			value += w[3] * func(XYG[7+2*i],time);
			value += w[3] * func(XYG[8+2*i],time);
		}
		return value;
	}

	Storage::real meantet(Storage::real * v0, Storage::real * v1, Storage::real * v2, Storage::real * v3, Storage::real (*func)(Storage::real* x,Storage::real),Storage::real time)
	{
		Storage::real value;
		static const Storage::real T5A = 0.25, W5A = 0.11851851851852;
		static const Storage::real T5B = 0.09197107805272, T5C = 0.72408676584183, W5B = 0.07193708377902;
		static const Storage::real T5D = 0.31979362782963, T5E = 0.04061911651111;
		static const Storage::real W5C = 0.06906820722627;
		static const Storage::real T5F = 0.05635083268963, T5G = 0.44364916731037;
		static const Storage::real W5D = 0.05291005291005;
		static const Storage::real w[15] = {W5A,W5B,W5B,W5B,W5B,W5C,W5C,W5C,W5C,W5D,W5D,W5D,W5D,W5D,W5D};
		Storage::real XYG[15][3];
		for (int i = 0; i < 3 ;i++)
		{
			XYG[0][i] = T5A * (v0[i] + v1[i] + v2[i] + v3[i]);
			XYG[1][i] = T5C * v0[i] + T5B * (v1[i]+v2[i]+v3[i]);
			XYG[2][i] = T5C * v1[i] + T5B * (v0[i]+v2[i]+v3[i]);
			XYG[3][i] = T5C * v2[i] + T5B * (v0[i]+v1[i]+v3[i]);
			XYG[4][i] = T5C * v3[i] + T5B * (v0[i]+v1[i]+v2[i]);

			XYG[5][i] = T5E * v0[i] + T5D * (v1[i]+v2[i]+v3[i]);
			XYG[6][i] = T5E * v1[i] + T5D * (v0[i]+v2[i]+v3[i]);
			XYG[7][i] = T5E * v2[i] + T5D * (v0[i]+v1[i]+v3[i]);
			XYG[8][i] = T5E * v3[i] + T5D * (v0[i]+v1[i]+v2[i]);

			XYG[9][i] = T5F * (v0[i] + v1[i]) + T5G * (v2[i] + v3[i]);
			XYG[10][i] = T5G * (v0[i] + v1[i]) + T5F * (v2[i] + v3[i]);
			XYG[11][i] = T5F * (v0[i] + v3[i]) + T5G * (v1[i] + v2[i]);
			XYG[12][i] = T5G * (v0[i] + v3[i]) + T5F * (v1[i] + v2[i]);
			XYG[13][i] = T5F * (v0[i] + v2[i]) + T5G * (v1[i] + v3[i]);
			XYG[14][i] = T5G * (v0[i] + v2[i]) + T5F * (v1[i] + v3[i]);
		}
		value = 0;
		for (int i = 0 ; i < 15 ; i++)
			value += w[i] * func(XYG[i],time);
		return value;
	}

	Storage::real Element::Mean(Storage::real (*func)(Storage::real* x,Storage::real),Storage::real time)
	{
		Mesh * m = GetMeshLink();
		if( GetElementDimension() == 2 )
		{
			unsigned int dim = m->GetDimensions();
			Storage::real val = 0, vol = 0, tvol,tval;
			Storage::real normal[3];
			Storage::real v1[3],v2[3],product[3];
			m->GetGeometricData(this,NORMAL,normal);
			adjacent<Node> nodes = getNodes();
			Storage::real_array av0 = nodes.front().RealArray(m->CoordsTag());
			for(adjacent<Node>::iterator it = ++nodes.begin(); it != nodes.end(); it++)
			{
				adjacent<Node>::iterator jt = it++;
				if( it == nodes.end() ) break;
				Storage::real_array av1 = jt->getAsNode()->Coords();
				Storage::real_array av2 = it->getAsNode()->Coords();
Kirill Terekhov's avatar
Kirill Terekhov committed
1084
1085
1086
				tval = meantri(av0.data(),av1.data(),av2.data(),m->GetDimensions(),func,time);
				vec_diff(av1.data(),av0.data(),v1,dim);
				vec_diff(av2.data(),av0.data(),v2,dim);
Kirill Terekhov's avatar
Kirill Terekhov committed
1087
				if( dim == 2 ) v1[2] = v2[2] = 0;
Kirill Terekhov's avatar
Kirill Terekhov committed
1088
				vec_cross_product(v1,v2,product);
Kirill Terekhov's avatar
Kirill Terekhov committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
				tvol = vec_dot_product(product,normal,dim)*0.5;
				val += tval*tvol;
				vol += tvol;
				it = jt;
			}
			return val / vol;
		}
		else if( GetElementDimension() == 3 )
		{
			
			adjacent<Element> rfaces = getAdjElements(FACE);
			std::vector<int> n(rfaces.size());
			std::vector<Storage::real> v;
			int k = 0;
			for(adjacent<Element>::iterator f = rfaces.begin(); f != rfaces.end(); f++)
			{
				adjacent<Node> nodes = f->getNodes();
Kirill Nikitin's avatar
Kirill Nikitin committed
1106
1107
				int nn = n[k] = nodes.size();
				for(int i = 0; i < nn; i++)
Kirill Terekhov's avatar
Kirill Terekhov committed
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
				{
					Storage::real_array a = nodes[i].Coords();
					v.insert(v.end(),a.begin(),a.end());
				}
				k++;
			}
			int j = 0;
			Storage::real x[3], y[3], d, vol = 0, c;
			x[0] = x[1] = x[2] = 0;
			for(unsigned i = 0; i < n.size(); i++)
			{
				y[0] = y[1] = y[2] = d = 0;
				for(int k = 1; k < n[i] - 1; k++)
				{
					d += c = det3v(&v[j*3],&v[(j+k)*3],&v[(j+k+1)*3]);
					y[0] += c * (v[j*3+0] + v[(j+k)*3+0] + v[(j+k+1)*3+0]);
					y[1] += c * (v[j*3+1] + v[(j+k)*3+1] + v[(j+k+1)*3+1]);
					y[2] += c * (v[j*3+2] + v[(j+k)*3+2] + v[(j+k+1)*3+2]);
				}
				int orient = rfaces[i].getAsFace()->FaceOrientedOutside(getAsCell())?1:-1;
				x[0] += orient*y[0];
				x[1] += orient*y[1];
				x[2] += orient*y[2];
				vol += orient*d;
				j += n[i];
			}
			x[0] /= 4.0 * vol;
			x[1] /= 4.0 * vol;
			x[2] /= 4.0 * vol;
			vol /= 6;
			j = 0;
			vol = 0;
			Storage::real tvol, tval, val = 0;
			Storage::real vv0[3], vv1[3], vv2[3], prod[3];
			for(unsigned i = 0; i < n.size(); i++)
			{
				for(int k = 1; k < n[i] - 1; k++)
				{
					vec_diff(&v[j*3],x,vv0,3);
					vec_diff(&v[(j+k)*3],x,vv1,3);
					vec_diff(&v[(j+k+1)*3],x,vv2,3);
					vec_cross_product(vv1,vv2,prod);
					tvol = vec_dot_product(vv0,prod,3)/6.0 * (rfaces[i].getAsFace()->FaceOrientedOutside(getAsCell())?1:-1);
					tval = meantet(x,&v[j*3],&v[(j+k)*3],&v[(j+k+1)*3],func,time);
					val += tval * tvol;
					vol += tvol;
				}
				j+=n[i];
			}
			return val / vol;
		}
		else if ( GetElementDimension() == 1 ) //Mean value over line.
		{
			adjacent<Node> nodes = getNodes();
			unsigned int dim = m->GetDimensions();
			Storage::real_array x1 = nodes[0].Coords();
			Storage::real_array x2 = nodes[1].Coords();
			Storage::real middle[3];
			for (unsigned int i = 0 ; i < dim ; i++) middle[i] = (x1[i]+x2[i])*0.5;
			//Simpson formula
Kirill Terekhov's avatar
Kirill Terekhov committed
1168
			return (func(x1.data(),time) + 4*func(middle,time) + func(x2.data(),time))/6e0;
Kirill Terekhov's avatar
Kirill Terekhov committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
		}
		return 0;
	}
	
	
	
	std::vector<Face *> Mesh::GatherBoundaryFaces()
	{
		std::vector<Face *> ret;
		for(Mesh::iteratorFace f = BeginFace(); f != EndFace(); f++)
			if( f->Boundary() ) ret.push_back(&*f);
		return ret;
	}

	std::vector<Face *> Mesh::GatherInteriorFaces()
	{
		std::vector<Face *> ret;
		if( GetMeshState() == Mesh::Serial )
		{
			for(Mesh::iteratorFace f = BeginFace(); f != EndFace(); f++)
				if( f->nbAdjElements(CELL) == 2 ) ret.push_back(&*f);
		}
		else
		{
			for(Mesh::iteratorFace f = BeginFace(); f != EndFace(); f++)
			{
				adjacent<Cell> cells = f->getCells();
				if( cells.size() == 2 && cells[0].GetStatus() != Element::Ghost && cells[1].GetStatus() != Element::Ghost)
					ret.push_back(&*f);
			}
		}
		return ret;
	}

	Storage::integer Mesh::CountBoundaryFaces()
	{
		Storage::integer ret = 0;
		for(Mesh::iteratorFace f = BeginFace(); f != EndFace(); f++)
			if( f->Boundary() ) ret++;
		return ret;
	}

	Storage::integer Mesh::CountInteriorFaces()
	{
		Storage::integer ret = 0;
		if( GetMeshState() == Mesh::Serial )
		{
			for(Mesh::iteratorFace f = BeginFace(); f != EndFace(); f++)
				if( f->nbAdjElements(CELL) == 2 ) ret++;
		}
		else
		{
			for(Mesh::iteratorFace f = BeginFace(); f != EndFace(); f++)
			{
				adjacent<Cell> cells = f->getCells();
				if( cells.size() == 2 && cells[0].GetStatus() != Element::Ghost && cells[1].GetStatus() != Element::Ghost)
					ret++;
			}
		}

		return ret;
	}
	
	

	
	void Element::CastRay(Storage::real * pos, Storage::real * dir, dynarray< std::pair<Element *, Storage::real> , 16 > & hits)
	{
		Mesh * mm = GetMeshLink();
		unsigned dim = mm->GetDimensions();
		Storage::real eps = mm->GetEpsilon();
		switch(GetElementType())
		{
			case NODE:
			{
				Storage::real_array coords = getAsNode()->Coords();
				Storage::real vec[3],ndir[3], lvec, ldir;
				for(unsigned k = 0; k < dim; k++)
				{
					vec[k] = (coords[k]-pos[k]);
					ndir[k] = dir[k];
				}
				lvec = vec_normalize(vec,dim);
				ldir = vec_normalize(ndir,dim);
				if( vec_dot_product(vec,ndir,dim) >= 1.0 - eps )
					hits.push_back(std::pair<Element *,Storage::real>(this,lvec/ldir));
			}	 
			break;
			case EDGE:
			{
				throw NotImplemented;
			}
			break;
			case FACE:
			{
				Element * shr_nodes[2];
				Storage::real tri[3][3];
				Centroid(tri[2]);
				adjacent<Node> nodes = getNodes();
Kirill Terekhov's avatar
Kirill Terekhov committed
1268
				memcpy(tri[0],nodes[nodes.size()-1].Coords().data(),sizeof(Storage::real)*dim);
Kirill Terekhov's avatar
Kirill Terekhov committed
1269
1270
				for(unsigned q = 0; q < nodes.size(); q++)
				{
Kirill Terekhov's avatar
Kirill Terekhov committed
1271
					memcpy(tri[1],nodes[q].Coords().data(),sizeof(Storage::real)*dim);
Kirill Terekhov's avatar
Kirill Terekhov committed
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
					Storage::real a[3],b[3],c[3],n[3], d, k, m;
					Storage::real dot00,dot01,dot02,dot11,dot12,invdenom, uq,vq;
					a[0] = tri[0][0] - tri[2][0];
					a[1] = tri[0][1] - tri[2][1];
					b[0] = tri[1][0] - tri[2][0];
					b[1] = tri[1][1] - tri[2][1];
					if( dim > 2 )
					{
						a[2] = tri[0][2] - tri[2][2];
						b[2] = tri[1][2] - tri[2][2];
					}
					else a[2] = b[2] = 0;
					vec_cross_product(a,b,n);
					d = -vec_dot_product(n,tri[0],dim);
					m =  vec_dot_product(n,dir,dim);
					if( !(fabs(m) < 1.0e-25) )
					{
						k = -(d + vec_dot_product(n,pos,dim))/m;
						if( k >= 0 )
						{
							c[0] = pos[0] + k*dir[0] - tri[2][0];
							c[1] = pos[1] + k*dir[1] - tri[2][1];
							if( dim > 2 ) c[2] = pos[2] + k*dir[2] - tri[2][2]; else c[2] = 0;
							dot00 = vec_dot_product(a,a,dim);
							dot01 = vec_dot_product(a,b,dim);
							dot02 = vec_dot_product(a,c,dim);
							dot11 = vec_dot_product(b,b,dim);
							dot12 = vec_dot_product(b,c,dim);
							invdenom = (dot00*dot11 - dot01*dot01);
							uq = (dot11*dot02-dot01*dot12);
							vq = (dot00*dot12-dot01*dot02);
							if( !(fabs(invdenom) < 1.0e-25  && fabs(uq) >= 0.0 && fabs(vq) >= 0.0) )
							{
								uq = uq/invdenom;
								vq = vq/invdenom;
								if( uq >= -eps && vq >= -eps )
								{
									if( 1.0-(uq+vq) >= -eps ) 
									{
										if( 1.0-(uq+vq) <= eps )
										{
											shr_nodes[0] = &nodes[(q-1+nodes.size())%nodes.size()];
											shr_nodes[1] = &nodes[q];
											if( uq <= eps && vq >= -eps )
												hits.push_back(std::pair<Element *,Storage::real>(shr_nodes[0],k));
											else if ( vq >= -eps && vq <= eps )
												hits.push_back(std::pair<Element *,Storage::real>(shr_nodes[1],k));
											else
												hits.push_back(std::pair<Element *,Storage::real>(mm->FindSharedAdjacency(shr_nodes,2),k));
										} 
										else
											hits.push_back(std::pair<Element *,Storage::real>(this,k));
										break; //we shouldn't have more then one intersection
									}
								}
							}
						}
					}
					memcpy(tri[0],tri[1],sizeof(Storage::real)*dim);
				}
			}
			break;
			case CELL:
			{
				adjacent<Face> faces = getFaces();
				for(adjacent<Face>::iterator it = faces.begin(); it != faces.end(); ++it)
					it->CastRay(pos,dir,hits);
			}
			break;
			/*
			case ESET: //cast ray through set of elements, probably accelerate by tree
			throw NotImplemented;
			break;
			case MESH: //cast ray through all elements, probably accelerate by tree
			throw NotImplemented;
			break;
			*/
		}
	}
}
#endif