solver_k3biilu2.cpp 17.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
#include "solver_k3biilu2.h"

//#if defined(USE_SOLVER_K3BIILU2)

#include <stdio.h>
#include <stdlib.h>
#include <memory.h>
#include <math.h>
#include <string>

#include "k3d.h"


static int    set_kovl   = 0;    // number of overlap layers: kovl=0,1,2,...
static double set_tau    = 3e-3; // the ILU2 precision (for the submatrix factorization); tau=3e-3
static double set_eps    = 1e-5; // the residual precision: ||r|| < eps * ||b||; eps=1e-6
static int    set_nit    = 999;  // number of iterations permitted; nit=999
static int    set_msglev = 2;    // messages level; msglev=0 for silent; msglev=1 to output solution statistics

/* BiCGStab solver structure */
typedef struct 
{
    int n;            // local number of unknowns at the local processor
    int nproc;        // number of processors
    int    * ibl;     // block splitting: ibl[0]=0; ibl[nproc]=nglob
    int    * ia;      // row pointers: ia[0]=0; ia[nloc]=nzloc
    int    * ja;      // column numbers (NOTE: starting from 0 or 1); ja[nzloc]
    double * a;       // matrix A coefficients; a[nzloc]
    int len_r8;       // size of the working memory, set len_r8=nbl for the first call
    double * W;       // poiter to the working memory W[len_r8]
    int    kovl;      // number of overlap layers: kovl=0,1,2,...
    double tau;       // the ILU2 precision (for the submatrix factorization); tau=3e-3
    double eps;       // the residual precision: ||r|| < eps * ||b||; eps=1e-6
    int    nit;       // number of iterations permitted; nit=999
    int    msglev;    // messages level; msglev=0 for silent; msglev=1 to output solution statistics
    int    ierr;      // error flag on return; ierr=0 for success
    int    istat[16]; // integer statistics array on return
    double dstat[16]; // double  statistics array on return
    double RESID;     // residual norm
    int    ITER;      // number of BiCGStab iterations performed
} bcg;

typedef struct
{
    int n;            // local number of unknowns at the local processor
    int nproc;        // number of processors
    int * ibl;        // block splitting: ibl[0]=0; ibl[nproc]=nglob
    int * ia;
    int * ja;
    double * A;
} matrix;

typedef struct
{
    int n;            // local number of unknowns at the local processor
    double * v;
} Vector;

/*****************************************************************************/
#include <stdlib.h>   // for malloc()
#include <stdio.h>    // for printf()
#if defined (USE_MPI)
#include <mpi.h>      // for MPI_COMM_WORLD etc.
#endif

#if defined (USE_MPI)
#define MPI_BARRIER(comm) \
        MPI_Barrier(comm)
#else
#define MPI_BARRIER(comm)
#endif

#if defined (USE_MPI)
#define MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm) \
        MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm)
#else
#define MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)
#endif

// Solve the linear system A X = B by
//  k3biilu2_bcg solver with working memory allocations and statistics output
int k3biilu2_bcg (
        int *ibl,   // block splitting: ibl[0]=0; ibl[nproc]=n
        int *ia,    // row pointers: ia[0]=0; ia[nloc]=nzloc
        int *ja,    // column numbers (NOTE: starting from 0 or 1); ja[nzloc]
        double *a,  // matrix A coefficients; a[nzloc]
        double *b,  // right-hand side B; b[nloc]
        double *x,  // initial guess to the solution X on entry; solution X on return; x[nloc]
	int job,    // job number: 0 - construct preconditioner; 1 - use the previously constructed one
        int *len_r8,// size of the working memory, set len_r8=nbl for the first call
        double **S, // poiter to the working memory S[len_r8]
        int kovl,   // number of overlap layers: kovl=0,1,2,...
        double tau, // the ILU2 precision (for the submatrix factorization); tau=3e-3
        double eps, // the residual precision: ||r|| < eps * ||b||; eps=1e-6
        int nit,    // number of iterations permitted; nit=999; if(nit==0) preconditioner construction only
        int msglev, // messages level; msglev=0 for silent; msglev=1 to output solution statistics
        int *ierr,  // error flag on return; ierr=0 for success
        int    *istat,  //[16],  // integer statistics array on return
        double *dstat)  //[16]); // double  statistics array on return
//
// Here, in notation:
//      nproc - the number of processors (or blocks), nproc is equal to the MPI communicator size
//      nzloc - the local number of nonzero elements, nzloc=ia[[myid+1]]-ia[ibl[myid]]
//      nloc  - the local number of unknowns at the current processor, nloc=ibl[myid+1]-ibl[myid]
//      n     - the total number of unknowns in matrix A, n=ibl[nproc]
//
// ON ENTRY:
//      ibl, ia, ja, a, b, x, job, len_r8, S, kovl, tau, eps, nit, msglev
// ON RETURN:
//      x, len_r8, S, ierr, istat, dstat
//
{
    // Initialize MPI variables
    int np=1, mp=0;
    MPI_Comm comm = MPI_COMM_WORLD; //TODO: MSPP_COMM_WORLD
#if defined (USE_MPI)
    MPI_Comm_size(MPI_COMM_WORLD, &np);
    MPI_Comm_rank(MPI_COMM_WORLD, &mp);
#endif

    k3d::SSolverParams params;

    params.prec_float = 1;
    params.ncycle = kovl;
    params.fcttype = -1;
    params.tau1 = tau;
    params.tau2 = tau*tau;
    params.theta = 0.1e0;

    std::vector<long long> blks (np+1);
    std::vector<int> blk2cpu (np+1);

    long long *pblks = &blks[0];
    int *pblk2cpu = &blk2cpu[0];

    int i;

    for (i=0;i<=np;i++) pblks[i] = ibl[i];
    for (i=0;i<np;i++) pblk2cpu[i] = i;

    k3d::CSolver<int,double,double> *pSolver = new k3d::CSolver<int,double,double>;

    pSolver->PrepareSolver ((void *)&comm, &params, np, pblks, pblk2cpu,
                            true, ia, ja, a);

    if (nit > 0) {
       int ichk = 5;
       msglev = 0;
       ofstream *pfout = NULL;
       if (mp == 0) msglev = 2;
       double rhs_norm, res_ini, res_fin;
       int niter;
       pSolver->BiCGStab (nit, eps, ichk, msglev, pfout,
                          b, x,
			  rhs_norm, res_ini, niter, res_fin);
       istat[2] = niter;
       dstat[2] = (rhs_norm == 0e0) ? res_fin : res_fin/rhs_norm;
    }
    
    *ierr = 0;

    return *ierr;
}
/*****************************************************************************/

/* Initialize bcg solver */
static int initbcg(bcg *s, matrix *A, double eps);
/* Reinitialize solver preconditioner with new matrix A */
static int renewbcg(bcg *s, double *A);
/* Solve linear system */
/*static*/ int solvebcg(bcg *s, Vector *b, Vector *x);
/* Free memory used by solver */
static void freebcg(bcg *s);

/*****************************************************************************/

/* Initialize solver with new matrix A */
static int newmatrixbcg(bcg *s, matrix *A, bool same_precond) 
{
    if( s->n != A->n && same_precond ) throw INMOST::CannotReusePreconditionerOfDifferentSize;
    s->n     = A->n;
    s->nproc = A->nproc;
    s->ibl   = A->ibl;
    s->ia    = A->ia;
    s->ja    = A->ja;
    if( !same_precond )
    {
	//do nothing...
        //std::cout<<"##### inside newmatrixbcg bef. renewbcg \n";//db!
	return renewbcg(s, A->A);
    }
    else return 0;
}

/* solver */
/* Initialize bcg solver */
int initbcg(bcg *s, matrix *A, double eps) 
{
    s->eps = eps;
    //std::cout<<"##### inside initbcg bef. newmatrixbcg eps="<<eps<<" \n";//db!
    return newmatrixbcg(s, A, false);
}

/* Reinitialize solver preconditioner with new matrix A */
int renewbcg(bcg *s, double *A) 
{
    //reinitialize matrix values
    s->a = A;
    //BIILU2 preconditioner construction...
    s->kovl    = set_kovl;
    s->tau     = set_tau;
    s->msglev  = set_msglev;

    int   job  = 0;
    int maxit  = 0;
    s->len_r8  = 0; //to be set by nbl inside k3biilu2_bcg
    if(s->W) free(s->W); s->W=NULL;

    int ierr = 0;
    //std::cout<<"##### inside renewbcg bef. k3biilu2_bcg\n";//db!
    //double *B = (double*) malloc(sizeof(double)*s->n); //db!!!!!!!!!!!!!!
    //double *X = (double*) malloc(sizeof(double)*s->n); //db!!!!!!!!!!!!!!
    k3biilu2_bcg (s->ibl, s->ia, s->ja, s->a,
                NULL, NULL,
		job, &s->len_r8, &s->W,
                s->kovl, s->tau, s->eps, maxit, s->msglev,
	        &ierr, s->istat, s->dstat);
    //std::cout<<"##### inside renewbcg aft. k3biilu2_bcg\n";//db!
    //free(B);free(X);//db!!!!!!!!!!!!!!!
    if (ierr) printf("initialization of biilu2 failed, ierr=%d\n", ierr);

    return ierr;
}

/* Solve linear system */
int solvebcg(bcg *s, Vector *b, Vector *x) 
{
    s->kovl    = set_kovl;
    s->tau     = set_tau;
//  s->eps     = set_eps;
    s->nit     = set_nit;
    s->msglev  = set_msglev;

    int   job  = 1;
    int maxit  = s->nit;

    int ierr = 0;
    //std::cout<<"##### inside solvebcg bef. k3biilu2_bcg\n";//db!
    k3biilu2_bcg (s->ibl, s->ia, s->ja, s->a, b->v, x->v,
		job, &s->len_r8, &s->W,
                s->kovl, s->tau, s->eps, maxit, s->msglev,
	        &ierr, s->istat, s->dstat);
    //std::cout<<"##### inside solvebcg aft. k3biilu2_bcg\n";//db!

    s->ITER  = s->istat[2];
    s->RESID = s->dstat[2];

    return ierr;
}

/* Free memory used by solver */
void freebcg(bcg *s) 
{
    if(s->W) free(s->W); s->W=NULL; //-IK!!!!!!!!!!!!!!!!!!
}

/*****************************************************************************/

void MatrixCopyDataK3biilu2(void ** ppA, void * pB)
{
	matrix * B = (matrix *)pB;
	if( ppA == NULL || pB == NULL ) throw INMOST::DataCorruptedInSolver;
	*ppA = malloc(sizeof(matrix));
	matrix * A = (matrix *)ppA;
	A->n = B->n;
	if( B->n != 0 )
	{
		int nnz = B->ia[B->n] - B->ia[0];
		A->nproc = B->nproc;
		A->ibl = (int *) malloc(sizeof(int)*(A->nproc+1));
		memcpy(A->ibl,B->ibl,sizeof(int)*(A->nproc+1));
		A->ia = (int *) malloc(sizeof(int)*(A->n+1));
		memcpy(A->ia,B->ia,sizeof(int)*(A->n+1));
		A->ja = (int *) malloc(sizeof(int)*nnz);
		memcpy(A->ja,B->ja,sizeof(int)*nnz);
		A->A = (double *) malloc(sizeof(double)*nnz);
		memcpy(A->A,B->A,sizeof(double)*nnz);
	}
}

void MatrixAssignDataK3biilu2(void * pA, void * pB)
{
	matrix * A = (matrix *)pA;
	matrix * B = (matrix *)pB;
	if( A == NULL || B == NULL ) throw INMOST::DataCorruptedInSolver;
	if( A != B )
	{
		if( A->n != 0 )
		{
			free(A->ibl);
			free(A->ia);
			free(A->ja);
			free(A->A);
		}
		if( B->n != 0 )
		{
			int nnz = B->ia[B->n] - B->ia[0];
			A->n = B->n;
			A->nproc = B->nproc;
			A->ibl = (int *) malloc(sizeof(int)*(A->nproc+1));
			memcpy(A->ibl,B->ibl,sizeof(int)*(A->nproc+1));
			A->ia = (int *) malloc(sizeof(int)*(A->n+1));
			memcpy(A->ia,B->ia,sizeof(int)*(A->n+1));
			A->ja = (int *) malloc(sizeof(int)*nnz);
			memcpy(A->ja,B->ja,sizeof(int)*nnz);
			A->A = (double *) malloc(sizeof(double)*nnz);
			memcpy(A->A,B->A,sizeof(double)*nnz);	
		}
	}
}

void MatrixInitDataK3biilu2(void ** ppA, INMOST_MPI_Comm comm, const char * name)
{
        //std::cout<<"##### ins. MatrixInitDataK3biilu2 \n";//db!
	if( ppA == NULL ) throw INMOST::DataCorruptedInSolver;
	if( *ppA == NULL )
	{
		*ppA = malloc(sizeof(matrix));
		matrix * A = (matrix *)*ppA;
		A->n = 0;
		A->nproc = 0;
                //std::cout<<"##### ins. MatrixInitDataK3biilu2 n=nproc=0 \n";//db!
	}
    (void) comm;
    (void) name;
}

void MatrixDestroyDataK3biilu2(void ** pA)
{
	matrix * A = (matrix *)(*pA);
	if( A != NULL )
	{
		if( A->n != 0 )
		{
			free(A->ibl);
			free(A->ia);
			free(A->ja);
			free(A->A);
                        //std::cout<<"##### ins. MatrixDestroyDataK3biilu2 ...free \n";//db!
		}
		free(*pA);
		*pA = NULL;
	}
}



void MatrixFillK3biilu2(void * pA, int size, int nproc, int * ibl, int * ia, int * ja, double * values)
{
        //std::cout<<"##### ins. MatrixFillK3biilu2 n="<<size<<" nproc="<<nproc<<" \n";//db!
	if( pA == NULL ) throw INMOST::DataCorruptedInSolver;
	matrix * A = (matrix *) pA;
	A->n = size;
	A->nproc = nproc;
	A->ibl = ibl;
	A->ia = ia;
	A->ja = ja;
	A->A = values;
}

void MatrixFillValuesK3biilu2(void * pA, double * values)
{
        //std::cout<<"##### ins. MatrixFillValuesK3biilu2 \n";//db!
	if( pA == NULL ) throw INMOST::DataCorruptedInSolver;
	matrix * A = (matrix *) pA;
	free(A->A);
	A->A = values;
}

void MatrixFinalizeK3biilu2(void * data)
{
	//don't need to do anything
    (void) data;
}

void VectorInitDataK3biilu2(void ** ppA, INMOST_MPI_Comm comm, const char * name)
{
	if( ppA == NULL ) throw INMOST::DataCorruptedInSolver;
	*ppA = malloc(sizeof(Vector));
	Vector * A = (Vector *)*ppA;
	A->n = 0;
    (void) comm;
    (void) name;
}

void VectorCopyDataK3biilu2(void ** ppA, void * pB)
{
        //std::cout<<"##### ins. VectorCopyDataK3biilu2 \n";//db!
	if( ppA == NULL || pB == NULL ) throw INMOST::DataCorruptedInSolver;
	*ppA = malloc(sizeof(Vector));
	Vector * A = (Vector *)*ppA;
	Vector * B = (Vector *)pB;
	A->n = B->n;
	if( B->n != 0 )
	{
		A->v = (double *)malloc(sizeof(double)*A->n);
		memcpy(A->v,B->v,sizeof(double)*A->n);
	}
}

void VectorAssignDataK3biilu2(void * pA, void * pB)
{
        //std::cout<<"##### ins. VectorAssignDataK3biilu2 \n";//db!
	Vector * A = (Vector *)pA;
	Vector * B = (Vector *)pB;
	if( A == NULL || B == NULL ) throw INMOST::DataCorruptedInSolver;
	if( A != B )
	{
		if( A->n != 0 ) free(A->v);
		A->n = B->n;
		if( B->n != 0 )
		{
			A->v = (double *) malloc(sizeof(double)*A->n);
			memcpy(A->v,B->v,sizeof(double)*A->n);
		}
	}
}

void VectorPreallocateK3biilu2(void * pA, int size)
{
	Vector * A = (Vector *)pA;
	if( A == NULL ) throw INMOST::DataCorruptedInSolver;
	A->n = size;
	A->v = (double *)malloc(sizeof(double)*size);
}

void VectorFillK3biilu2(void * pA, double * values)
{
	Vector * A = (Vector *)pA;
	if( A == NULL ) throw INMOST::DataCorruptedInSolver;
	memcpy(A->v,values,sizeof(double)*A->n);
}
void VectorLoadK3biilu2(void * pA, double * values)
{
	Vector * A = (Vector *)pA;
	if( A == NULL ) throw INMOST::DataCorruptedInSolver;
	memcpy(values,A->v,sizeof(double)*A->n);
}

void VectorFinalizeK3biilu2(void * data)
{
    (void) data;
}

void VectorDestroyDataK3biilu2(void ** ppA)
{
	if( ppA == NULL) throw INMOST::DataCorruptedInSolver;
	if( *ppA != NULL )
	{
		Vector * A = (Vector *)*ppA;
		free(A->v);
		free(*ppA);
		*ppA = NULL;
	}
}

void SolverInitializeK3biilu2(int * argc, char *** argv, const char * file_options)
{
    //std::cout<<"##### ins. SolverInitializeK3biilu2 ("<<file_options<<") \n";//db!
    if (file_options == NULL) return;
    std::string s = file_options;
    if (s == "" || s == " ") return;
    std::ifstream is;
    //std::cout<<"##### ins. SolverInitializeK3biilu2: bef. open("<<file_options<<") \n";//db!
    is.open(file_options, std::ifstream::in);
    if (s == "ctrl_dat") {
        getline(is, s);                                      //1 skip iext
        getline(is, s);                                      //2 skip mtx filename
        getline(is, s);                                      //3 skip rhs filename
        getline(is, s); sscanf(s.c_str(), "%lg", &set_eps);  //4 eps
        getline(is, s); sscanf(s.c_str(), "%d",  &set_nit);  //5 nit
        getline(is, s); sscanf(s.c_str(), "%d",  &set_kovl); //6 kovl
        getline(is, s); sscanf(s.c_str(), "%lg", &set_tau);  //7 tau
        //? msglev
    } else {
        getline(is, s); sscanf(s.c_str(), "%d",  &set_kovl);   //2 kovl
        getline(is, s); sscanf(s.c_str(), "%lg", &set_tau);    //3 tau
        getline(is, s); sscanf(s.c_str(), "%lg", &set_eps);    //4 eps
        getline(is, s); sscanf(s.c_str(), "%d",  &set_nit);    //5 nit
        getline(is, s); sscanf(s.c_str(), "%d",  &set_msglev); //6 msglev
    }
    //std::cout<<"##### ins. SolverInitializeK3biilu2:  kovl="<<set_kovl<<" tau="<<set_tau<<" eps="<<set_eps<<" nit="<<set_nit<<" msglev="<<set_msglev<<" \n";//db!
	(void) argc;
	(void) argv;
}

bool SolverIsFinalizedK3biilu2()
{
	return true; //no need to finalize
}

void SolverFinalizeK3biilu2()
{
}

void SolverDestroyDataK3biilu2(void ** data)
{
	if( data != NULL )
	{
		if( *data != NULL )
		{
			bcg * m = (bcg *)*data;
			freebcg(m);
			free(m);
		}
		*data = NULL;
	}
}

void SolverInitDataK3biilu2(void ** data, INMOST_MPI_Comm comm, const char * name)
{
        //std::cout<<"##### ins. SolverInitDataK3biilu2 \n";//db!
	*data = malloc(sizeof(bcg));
	((bcg *)*data)->n = 0;
	((bcg *)*data)->nproc = 0;
	((bcg *)*data)->len_r8 = 0;
	((bcg *)*data)->W = NULL;
	(void) comm;
	(void) name;
}

void SolverCopyDataK3biilu2(void ** data, void * other_data, INMOST_MPI_Comm comm)
{
	throw INMOST::NotImplemented; //later
	(void) data;
	(void) other_data;
	(void) comm;
}

void SolverAssignDataK3biilu2(void * data, void * other_data)
{
	throw INMOST::NotImplemented; //later
	(void) data;
	(void) other_data;
}

void SolverSetMatrixK3biilu2(void * data, void * matrix_data, bool same_pattern, bool reuse_preconditioner)
{
        //std::cout<<"##### ins. SolverSetMatrixK3biilu2 \n";//db!
	bcg * m = (bcg *)data;
	matrix * A = (matrix *)matrix_data;
        //if( A == NULL) std::cout<<"##### A == NULL ... \n";//db!
        //if( m == NULL) std::cout<<"##### m == NULL ... \n";//db!
	if( A == NULL || m == NULL ) throw INMOST::DataCorruptedInSolver;
        //std::cout<<"##### ins. SolverSetMatrixK3biilu2 bef. initbcg or newmatrixbcg \n";//db!
	if( m->n == 0 )
		initbcg(m,A,set_eps);
	else
		newmatrixbcg(m,A,reuse_preconditioner);
	(void) same_pattern;
        //std::cout<<"##### ins. SolverSetMatrixK3biilu2 bef. return \n";//db!
}

bool SolverSolveK3biilu2(void * data, void * rhs_data, void * sol_data)
{
        //std::cout<<"##### ins. SolverSolveK3biilu2 \n";//db!
	bcg * m = (bcg *)data;
	Vector * rhs = (Vector*)rhs_data, * sol = (Vector *)sol_data;
	return solvebcg(m,rhs,sol) == 0;
}

int SolverIterationNumberK3biilu2(void * data)
{
	return ((bcg *)data)->ITER;
}

double SolverResidualNormK3biilu2(void * data)
{
	return ((bcg *)data)->RESID;
}

/*
void SolverAddOtherStatK3biilu2(void * data, unsigned int * pivmod, double * prdens, double * t_prec, double * t_iter)
{
	*pivmod += ((bcg *)data)->istat[0];
	*prdens += ((bcg *)data)->dstat[0];
	*t_prec += ((bcg *)data)->dstat[7];
	*t_iter += ((bcg *)data)->dstat[9];
	return;
}
*/

//#endif //USE_SOLVER_K3BIILU2