Commit 5a69bf6c by Kirill Terekhov

### More robust (and more expensive) algorithms for geometry

parent d52518bb
 ... ... @@ -877,12 +877,23 @@ namespace INMOST { *ret = 0; real nt[3] = {0,0,0}, l1[3] = {0,0,0}, l2[3] = {0,0,0},n0[3] = {0,0,0}, ss; real_array v0 = nodes[0].Coords(); real_array v1 = nodes[1].Coords(); real_array v2 = nodes[2].Coords(); //real_array v0 = nodes[0].Coords(); //real_array v1 = nodes[1].Coords(); //real_array v2 = nodes[2].Coords(); //vec_diff(v1,v0,l1,mdim); //vec_diff(v2,v0,l2,mdim); //vec_cross_product(l1,l2,n0); real_array v0 = nodes[0].Coords(), v1, v2; for(int i = 1; i < (int)nodes.size()-1; i++) { v1 = nodes[i].Coords(); v2 = nodes[i+1].Coords(); vec_diff(v1,v0,l1,mdim); vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,n0); vec_cross_product(l1,l2,nt); for(int q = 0; q < 3; ++q) n0[q] += nt[q]*0.5; } for(int i = 1; i < (int)nodes.size()-1; i++) { v1 = nodes[i].Coords(); ... ... @@ -891,9 +902,10 @@ namespace INMOST vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,nt); ss = vec_dot_product(n0,nt,3); ss /= fabs(ss); if( ss ) ss /= fabs(ss); *ret += sqrt(vec_dot_product(nt,nt,3))*0.5*ss; } if( *ret != *ret ) std::cout << "area is nan" << std::endl; *ret = fabs(*ret); } else *ret = 0; //~ if( isnan(*ret) || fabs(*ret) < 1e-15 ) throw -1; ... ... @@ -901,7 +913,8 @@ namespace INMOST } case 3: //volume of cell { //bool print = false; //redo: Cell me = Cell(this,e); ElementArray faces = me->getFaces(); bool ornt = true;//!HaveGeometricData(ORIENTATION,FACE); ... ... @@ -916,6 +929,7 @@ namespace INMOST real l1[3] = {0,0,0}, l2[3] = {0,0,0}; real nt[3] = {0,0,0}, cx[3] = {0,0,0}; me.Centroid(cx); //if( print ) std::cout << "cx: " << cx[0] << " " << cx[1] << " " << cx[2] << std::endl; for(unsigned j = 0; j < faces.size(); j++) { //compute normal to face ... ... @@ -926,13 +940,27 @@ namespace INMOST s = faces[j].FaceOrientedOutside(me) ? 1.0 : -1.0; x[0] = x[1] = x[2] = 0; n[0] = n[1] = n[2] = 0; n0[0] = n0[1] = n0[2] = 0; a = 0; real_array v0 = nodes[0].Coords(); real_array v1 = nodes[1].Coords(); real_array v2 = nodes[2].Coords(); //real_array v0 = nodes[0].Coords(); //real_array v1 = nodes[1].Coords(); //real_array v2 = nodes[2].Coords(); //vec_diff(v1,v0,l1,mdim); //vec_diff(v2,v0,l2,mdim); //vec_cross_product(l1,l2,n0); real_array v0 = nodes[0].Coords(), v1, v2; for(int i = 1; i < (int)nodes.size()-1; i++) { v1 = nodes[i].Coords(); v2 = nodes[i+1].Coords(); vec_diff(v1,v0,l1,mdim); vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,n0); vec_cross_product(l1,l2,nt); //if( print ) std::cout << "nt: " << nt[0] << " " << nt[1] << " " << nt[2] << std::endl; for(int q = 0; q < 3; ++q) n0[q] += nt[q]*0.5; } //if( print ) std::cout << "n0: " << n0[0] << " " << n0[1] << " " << n0[2] << std::endl; for(int k = 1; k < (int)nodes.size()-1; k++) { v1 = nodes[k+0].Coords(); ... ... @@ -942,8 +970,9 @@ namespace INMOST vec_cross_product(l1,l2,nt); for(int q = 0; q < 3; ++q) nt[q] *= 0.5; ss = vec_dot_product(n0,nt,3); ss /= fabs(ss); if( ss ) ss /= fabs(ss); at = sqrt(vec_dot_product(nt,nt,3))*ss; //if( print ) std::cout << "nt: " << nt[0] << " " << nt[1] << " " << nt[2] << " ss " << ss << " at " << at << std::endl; //same as faces[j].Normal(n) for(int q = 0; q < 3; ++q) n[q] += nt[q]; ... ... @@ -952,9 +981,12 @@ namespace INMOST x[q] += at*((v0[q]-cx[q])+(v1[q]-cx[q])+(v2[q]-cx[q]))/3.0; a += at; } //if( print ) std::cout << "n: " << n[0] << " " << n[1] << " " << n[2] << std::endl; //if( print ) std::cout << "x: " << x[0] << " " << x[1] << " " << x[2] << " a " << a << std::endl; for(int q = 0; q < 3; ++q) x[q] /= a; vol += s*vec_dot_product(x,n,3); } //if( print ) std::cout << "vol: " << vol << std::endl; if( ornt ) { if( vol < 0.0 ) vol = -vol; ... ... @@ -962,6 +994,12 @@ namespace INMOST ReleasePrivateMarker(rev); } *ret = vol/3.0; //if( *ret < 0 || *ret != *ret ) //{ // std::cout << "volume is " << *ret << std::endl; // print = true; // goto redo; //} break; } } ... ... @@ -1022,12 +1060,23 @@ namespace INMOST *ret = 0; real nt[3] = {0,0,0}, l1[3] = {0,0,0}, l2[3] = {0,0,0}; real c[3] = {0,0,0}, n0[3] = {0,0,0}, ss, cx[3] = {0,0,0}; real_array v0 = nodes[0].Coords(); real_array v1 = nodes[1].Coords(); real_array v2 = nodes[2].Coords(); //real_array v0 = nodes[0].Coords(); //real_array v1 = nodes[1].Coords(); //real_array v2 = nodes[2].Coords(); //vec_diff(v1,v0,l1,mdim); //vec_diff(v2,v0,l2,mdim); //vec_cross_product(l1,l2,n0); real_array v0 = nodes[0].Coords(), v1, v2; for(int i = 1; i < (int)nodes.size()-1; i++) { v1 = nodes[i].Coords(); v2 = nodes[i+1].Coords(); vec_diff(v1,v0,l1,mdim); vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,n0); vec_cross_product(l1,l2,nt); for(int q = 0; q < 3; ++q) n0[q] += nt[q]*0.5; } real a = 0, at; Element(this,e).Centroid(cx); for(int i = 1; i < (int)nodes.size()-1; i++) ... ... @@ -1038,7 +1087,7 @@ namespace INMOST vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,nt); ss = vec_dot_product(n0,nt,3); ss /= fabs(ss); if( ss ) ss /= fabs(ss); at = sqrt(vec_dot_product(nt,nt,3))*0.5*ss; for(int q = 0; q < mdim; ++q) c[q] += at*((v0[q]-cx[q])+(v1[q]-cx[q])+(v2[q]-cx[q]))/3.0; ... ... @@ -1074,15 +1123,27 @@ namespace INMOST s = faces[j].GetPrivateMarker(rev) ? -1.0 : 1.0; else s = faces[j].FaceOrientedOutside(me) ? 1.0 : -1.0; real_array v0 = nodes[0].Coords(); real_array v1 = nodes[1].Coords(); real_array v2 = nodes[2].Coords(); vec_diff(v1,v0,l1,mdim); vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,n0); //real_array v0 = nodes[0].Coords(); //real_array v1 = nodes[1].Coords(); //real_array v2 = nodes[2].Coords(); //vec_diff(v1,v0,l1,mdim); //vec_diff(v2,v0,l2,mdim); //vec_cross_product(l1,l2,n0); n0[0] = n0[1] = n0[2] = 0; x[0] = x[1] = x[2] = 0; n[0] = n[1] = n[2] = 0; a = 0; real_array v0 = nodes[0].Coords(), v1, v2; for(int i = 1; i < (int)nodes.size()-1; i++) { v1 = nodes[i].Coords(); v2 = nodes[i+1].Coords(); vec_diff(v1,v0,l1,mdim); vec_diff(v2,v0,l2,mdim); vec_cross_product(l1,l2,nt); for(int q = 0; q < 3; ++q) n0[q] += nt[q]*0.5; } for(int i = 1; i < (int)nodes.size()-1; i++) { real_array v1 = nodes[i].Coords(); ... ... @@ -1093,7 +1154,7 @@ namespace INMOST for(int q = 0; q < 3; ++q) nt[q] *= 0.5; ss = vec_dot_product(n0,nt,3); ss /= fabs(ss); if( ss ) ss /= fabs(ss); at = sqrt(vec_dot_product(nt,nt,3))*ss; //same as faces[j].Normal(n) for(int q = 0; q < 3; ++q) ... ... @@ -1121,8 +1182,12 @@ namespace INMOST ReleasePrivateMarker(rev); } vol /= 3.0; if( vol ) { for(int q = 0; q < mdim; ++q) ret[q] = c[q]/(vol) + cx[q]; } else for(int q = 0; q < mdim; ++q) ret[q] = cx[q]; //std::cout << ret[0] << " " << ret[1] << " " << ret[2] << std::endl; } } ... ...
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!