1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "inmost.h"
using namespace INMOST;
#ifndef M_PI
#define M_PI 3.141592653589
#endif
#if defined(USE_MPI)
#define BARRIER MPI_Barrier(MPI_COMM_WORLD);
#else
#define BARRIER
#endif
//shortcuts
typedef Storage::bulk bulk;
typedef Storage::real real;
typedef Storage::integer integer;
typedef Storage::enumerator enumerator;
typedef Storage::real_array real_array;
typedef Storage::var_array var_array;
const bool hybrid = false;
const double s = 1;
template<typename M> void PrintMatrix(const M & mat)
{
for(int i = 0; i < mat.Rows(); ++i)
{
for(int j = 0; j < mat.Cols(); ++j)
std::cout << get_value(mat(i,j)) << " ";
std::cout << std::endl;
}
}
// A = B
void CopyMatrix(Sparse::Matrix & A, const Sparse::Matrix & B)
{
A.SetInterval(B.GetFirstIndex(),B.GetLastIndex());
for(int k = B.GetFirstIndex(); k < B.GetLastIndex(); ++k)
{
A[k].Clear();
for(int l = 0; l < B[k].Size(); ++l)
A[k].Push(B[k].GetIndex(l),B[k].GetValue(l));
}
}
// A = B
void CopyVector(Sparse::Vector & A, const Sparse::Vector & B)
{
A.SetInterval(B.GetFirstIndex(),B.GetLastIndex());
for(int k = B.GetFirstIndex(); k < B.GetLastIndex(); ++k)
A[k] = B[k];
}
//A = B+C
void AddMatrix(Sparse::Matrix & A, const Sparse::Matrix & B, const Sparse::Matrix & C)
{
assert(B.GetFirstIndex() == C.GetFirstIndex());
assert(B.GetLastIndex() == C.GetLastIndex());
A.SetInterval(B.GetFirstIndex(),B.GetLastIndex());
for(int k = B.GetFirstIndex(); k < B.GetLastIndex(); ++k)
{
A[k].Clear();
for(int l = 0; l < B[k].Size(); ++l)
A[k][B[k].GetIndex(l)] += B[k].GetValue(l);
for(int l = 0; l < C[k].Size(); ++l)
A[k][C[k].GetIndex(l)] += C[k].GetValue(l);
}
}
void MultMatrix(Sparse::Matrix & A, double c)
{
for(int k = A.GetFirstIndex(); k < A.GetLastIndex(); ++k)
{
for(int l = 0; l < A[k].Size(); ++l)
A[k].GetValue(l) *= c;
}
}
void MultVector(Sparse::Vector & A, double c)
{
for(int k = A.GetFirstIndex(); k < A.GetLastIndex(); ++k)
{
A[k] *= c;
}
}
int main(int argc,char ** argv)
{
Solver::Initialize(&argc,&argv,""); // Initialize the solver and MPI activity
#if defined(USE_PARTITIONER)
Partitioner::Initialize(&argc,&argv); // Initialize the partitioner activity
#endif
if( argc > 1 )
{
double ttt; // Variable used to measure timing
bool repartition = false; // Is it required to redistribute the mesh?
Mesh * m = new Mesh(); // Create an empty mesh
{ // Load the mesh
ttt = Timer();
m->SetCommunicator(INMOST_MPI_COMM_WORLD); // Set the MPI communicator for the mesh
if( m->GetProcessorRank() == 0 ) std::cout << "Processors: " << m->GetProcessorsNumber() << std::endl;
if( m->isParallelFileFormat(argv[1]) ) //The format is
{
m->Load(argv[1]); // Load mesh from the parallel file format
repartition = true; // Ask to repartition the mesh
}
else if( m->GetProcessorRank() == 0 ) m->Load(argv[1]); // Load mesh from the serial file format
BARRIER
if( m->GetProcessorRank() == 0 ) std::cout << "Load the mesh: " << Timer()-ttt << std::endl;
}
#if defined(USE_PARTITIONER)
if (m->GetProcessorsNumber() > 1 )//&& !repartition) // Currently only non-distributed meshes are supported by Inner_RCM partitioner
{
{ // Compute mesh partitioning
ttt = Timer();
Partitioner p(m); //Create Partitioning object
p.SetMethod(Partitioner::Inner_RCM,repartition ? Partitioner::Repartition : Partitioner::Partition); // Specify the partitioner
p.Evaluate(); // Compute the partitioner and store new processor ID in the mesh
BARRIER
if( m->GetProcessorRank() == 0 ) std::cout << "Evaluate: " << Timer()-ttt << std::endl;
}
{ //Distribute the mesh
ttt = Timer();
m->Redistribute(); // Redistribute the mesh data
m->ReorderEmpty(CELL|FACE|EDGE|NODE); // Clean the data after reordring
BARRIER
if( m->GetProcessorRank() == 0 ) std::cout << "Redistribute: " << Timer()-ttt << std::endl;
}
}
#endif
{ // prepare geometrical data on the mesh
ttt = Timer();
Mesh::GeomParam table;
table[CENTROID] = CELL | FACE; //Compute averaged center of mass
table[NORMAL] = FACE; //Compute normals
table[ORIENTATION] = FACE; //Check and fix normal orientation
table[MEASURE] = CELL | FACE; //Compute volumes and areas
//table[BARYCENTER] = CELL | FACE; //Compute volumetric center of mass
m->PrepareGeometricData(table); //Ask to precompute the data
BARRIER
if( m->GetProcessorRank() == 0 ) std::cout << "Prepare geometric data: " << Timer()-ttt << std::endl;
}
// data tags for
Tag tag_P; // Pressure
Tag tag_K; // Diffusion tensor
Tag tag_F; // Forcing term
Tag tag_BC; // Boundary conditions
Tag tag_W; // Local approximation matrix
Tag tag_L; // store two-point half fluxes
Tag tag_Q; // store flux limiting values
Tag tag_H; // harmonic points
if( m->GetProcessorsNumber() > 1 ) //skip for one processor job
{ // Exchange ghost cells
ttt = Timer();
m->ExchangeGhost(1,FACE); // Produce layer of ghost cells
BARRIER
if( m->GetProcessorRank() == 0 ) std::cout << "Exchange ghost: " << Timer()-ttt << std::endl;
}
{ //initialize data
if( m->HaveTag("PERM") ) // is diffusion tensor already defined on the mesh? (PERM from permeability)
tag_K = m->GetTag("PERM"); // get the diffusion tensor
if( !tag_K.isValid() || !tag_K.isDefined(CELL) ) // diffusion tensor was not initialized or was not defined on cells.
{
tag_K = m->CreateTag("PERM",DATA_REAL,CELL,NONE,6); // create a new tag for symmetric diffusion tensor K
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) ) // loop over mesh cells
{
Cell cell = m->CellByLocalID(q);
real_array K = cell->RealArray(tag_K);
// assign a symmetric positive definite tensor K
K[0] = 1.0; //XX
K[1] = 0.0; //XY
K[2] = 0.0; //XZ
K[3] = 1.0; //YY
K[4] = 0.0; //YZ
K[5] = 1.0; //ZZ
}
m->ExchangeData(tag_K,CELL,0); //Exchange diffusion tensor
}
if( m->HaveTag("PRESSURE") ) //Is there a pressure on the mesh?
tag_P = m->GetTag("PRESSURE"); //Get the pressure
if( !tag_P.isValid() || !tag_P.isDefined(CELL) ) // Pressure was not initialized or was not defined on nodes
{
srand(1); // Randomization
tag_P = m->CreateTag("PRESSURE",DATA_REAL,CELL|FACE,NONE,1); // Create a new tag for the pressure
for(Mesh::iteratorElement e = m->BeginElement(CELL|FACE); e != m->EndElement(); ++e) //Loop over mesh cells
e->Real(tag_P) = 0;//(rand()*1.0)/(RAND_MAX*1.0); // Prescribe random value in [0,1]
}
/*
if( m->HaveTag("REFERENCE_SOLUTION") )
{
Tag tag_Pr = m->GetTag("REFERENCE_SOLUTION");
for(Mesh::iteratorElement it = m->BeginElement(CELL|FACE); it != m->EndElement(); ++it)
it->Real(tag_P) = it->Real(tag_Pr);
}
*/
if( hybrid && !tag_P.isDefined(FACE) )
{
tag_P = m->CreateTag("PRESSURE",DATA_REAL,FACE,NONE,1);
for(Mesh::iteratorElement e = m->BeginElement(FACE); e != m->EndElement(); ++e) //Loop over mesh cells
e->Real(tag_P) = 0;//(rand()*1.0)/(RAND_MAX*1.0); // Prescribe random value in [0,1]
}
if( m->HaveTag("BOUNDARY_CONDITION") ) //Is there boundary condition on the mesh?
{
tag_BC = m->GetTag("BOUNDARY_CONDITION");
//initialize unknowns at boundary
}
m->ExchangeData(tag_P,CELL|(hybrid?FACE:NONE),0); //Synchronize initial solution with boundary unknowns
tag_W = m->CreateTag("W",DATA_REAL,CELL,NONE);
tag_L = m->CreateTag("L",DATA_REAL,CELL,NONE);
if( hybrid ) tag_H = m->CreateTag("H",DATA_REAL,FACE,NONE,3);
tag_Q = m->CreateTag("Q",DATA_VARIABLE,FACE,NONE,2);
ttt = Timer();
//Assemble gradient matrix W on cells
int total = 0, dmp = 0;
#if defined(USE_OMP)
#pragma omp parallel reduction(+:total) reduction(+:dmp)
#endif
{
rMatrix xc(3,1), //center of the cell
xn(3,1), //center of neighbour cell
ys(3,1), //harmonic point on face
nf(3,1), //normal to the face
Knf(3,1), //co-normal vector
r(3,1); //vector from cell center to face center
rMatrix W, //approximation matrix
K(3,3), Kn(3,3), //permeability tensor
N, //matrix of normals
R, //matrix of vectors
V,L; //half-flux transmissibility
rMatrix x1(3,1), x2(3,1), K1(3,3), K2(3,3);
real l1,l2,d1,d2;
real l,T, //half-flux two-point transmissibility
d, //distance from cell to face
af, //area of the face
mult_T,mult_xi, mult_r, mult_p;
int NF; //number of faces
//find out harmonic points
if( hybrid )
{
#if defined(USE_OMP)
#pragma omp for
#endif
for( int q = 0; q < m->FaceLastLocalID(); ++q ) if( m->isValidFace(q) )
{
Face face = m->FaceByLocalID(q);
real_array H = face->RealArray(tag_H);
Cell c1 = face->BackCell();
Cell c2 = face->FrontCell();
face->Centroid(ys.data());
if( c2.isValid() )
{
face->UnitNormal(nf.data());
c1.Centroid(x1.data());
K1 = rMatrix::FromTensor(c1->RealArrayDF(tag_K).data(),c1->RealArrayDF(tag_K).size());
d1 = nf.DotProduct(ys-x1);
l1 = nf.DotProduct(K1*nf);
c2.Centroid(x2.data());
K2 = rMatrix::FromTensor(c2->RealArrayDF(tag_K).data(),c2->RealArrayDF(tag_K).size());
d2 = nf.DotProduct(x2-ys);
l2 = nf.DotProduct(K2*nf);
r = (l2*d1*x2+l1*d2*x1+d1*d2*(K1-K2)*nf)/(l1*d2+l2*d1);
H[0] = r(0,0);
H[1] = r(1,0);
H[2] = r(2,0);
}
else
{
H[0] = ys(0,0);
H[1] = ys(1,0);
H[2] = ys(2,0);
}
}
}
//find out approximation matrix
#if defined(USE_OMP)
#pragma omp for
#endif
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) )
{
Cell cell = m->CellByLocalID(q);
real_array store_W = cell->RealArray(tag_W);
real_array store_L = cell->RealArray(tag_L);
ElementArray<Face> faces = cell->getFaces(); //obtain faces of the cell
NF = (int)faces.size(); //number of faces;
cell->Centroid(xc.data());
K = rMatrix::FromTensor(cell->RealArrayDF(tag_K).data(),cell->RealArrayDF(tag_K).size());
W.Resize(NF,NF);
N.Resize(NF,3);
R.Resize(NF,3);
V.Resize(NF,3);
L.Resize(NF,NF);
store_L.resize(NF);
for(int k = 0; k < NF; ++k) //loop over faces
{
mult_T = mult_xi = mult_r = 1;
mult_p = 0;
faces[k].OrientedUnitNormal(cell,nf.data());
if( hybrid )
{
ys = rMatrix::FromVector(faces[k].RealArray(tag_H).data(),3);
r = ys-xc;
}
else
{
Cell n = cell.Neighbour(faces[k]);
faces[k].Centroid(ys.data());
if( n.isValid() )
{
Kn = rMatrix::FromTensor(n->RealArrayDF(tag_K).data(),n->RealArrayDF(tag_K).size());
n.Centroid(xn.data());
d = nf.DotProduct(xn-ys);
l = nf.DotProduct(Kn*nf);
r = xn-xc + d/l*(K-Kn)*nf;
// d = n.r = d1+d2 + d2/l2*(l1-l2) = d1 + d2 + d2*l1/l2 - d2 = (d1*l2 + d2*l1)/l2
// l1/d = l1*l2/(d1*l2+d2*l1)
}
else
{
real BC[3] = {0,1,0};
if( tag_BC.isValid() && faces[k].HaveData(tag_BC) )
{
BC[0] = faces[k].RealArray(tag_BC)[0];
BC[1] = faces[k].RealArray(tag_BC)[1];
BC[2] = faces[k].RealArray(tag_BC)[2];
}
d = nf.DotProduct(ys-xc);
l = nf.DotProduct(K*nf);
T = l/d;
mult_r = (BC[0] + s*BC[1]*T);
mult_T = 1.0/mult_r;
mult_xi = BC[0]*mult_T;
mult_p = BC[1];
r = ys - xc;
}
}
Knf = K*nf;
l = fabs(nf.DotProduct(Knf));
d = fabs(nf.DotProduct(r));
af = faces[k].Area();
T = l/d;
// assemble matrix of directions
R(k,0) = r(0,0)*mult_r + mult_p*(Knf(0,0) - s*T*r(0,0));
R(k,1) = r(1,0)*mult_r + mult_p*(Knf(1,0) - s*T*r(1,0));
R(k,2) = r(2,0)*mult_r + mult_p*(Knf(2,0) - s*T*r(2,0));
// assemble matrix of normals
N(k,0) = nf(0,0)*af;
N(k,1) = nf(1,0)*af;
N(k,2) = nf(2,0)*af;
V(k,0) = (Knf(0,0) - s*T*r(0,0))*af*mult_xi;
V(k,1) = (Knf(1,0) - s*T*r(1,0))*af*mult_xi;
V(k,2) = (Knf(2,0) - s*T*r(2,0))*af*mult_xi;
//L(k,k) = l/d*af;
store_L[k] = mult_T*s*T*af;
//L(k,k) = mult_T*T*af;
} //end of loop over faces
W = V*(N.Transpose()*R).Invert(true).first*N.Transpose();
if( W.CheckNans() )
{
std::cout << "Nans on " << cell->LocalID() << std::endl;
std::cout << "W" << std::endl;
PrintMatrix(W);
std::cout << "V" << std::endl;
PrintMatrix(V);
std::cout << "R" << std::endl;
PrintMatrix(R);
}
//W = N*K*((N*K).Transpose()*R).Invert(true).first*(N*K).Transpose() - s*L*R*((L*R).Transpose()*R).Invert(true).first*(L*R).Transpose();
//W = (N*K-s*L*R)*(N.Transpose()*R).Invert(true).first*N.Transpose();
store_W.resize(NF*NF); //resize the structure
std::copy(W.data(),W.data()+NF*NF,store_W.data()); //write down the gradient matrix
} //end of loop over cells
}
std::cout << "Construct W matrix: " << Timer() - ttt << std::endl;
if( m->HaveTag("FORCE") ) //Is there force on the mesh?
{
tag_F = m->GetTag("FORCE"); //initial force
assert(tag_F.isDefined(CELL)); //assuming it was defined on cells
} // end of force
} //end of initialize data
std::cout << "Initialization done" << std::endl;
integer nit = 0;
ttt = Timer();
{ //Main loop for problem solution
Automatizator aut; // declare class to help manage unknowns
Automatizator::MakeCurrent(&aut);
dynamic_variable P(aut,aut.RegisterTag(tag_P,CELL|(hybrid?FACE:NONE))); //register pressure as primary unknown
aut.EnumerateEntries(); //enumerate all primary variables
std::cout << "Enumeration done, size " << aut.GetLastIndex() - aut.GetFirstIndex() << std::endl;
Residual Resid("",aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::Matrix A("",aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::Vector x("",aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::Matrix J_prev("",aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::Vector x_prev("",aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::LockService Locks(aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::AnnotationService Text(aut.GetFirstIndex(),aut.GetLastIndex());
Sparse::Vector Update ("",aut.GetFirstIndex(),aut.GetLastIndex()); //vector for update
{//Annotate matrix
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) )
{
Cell cell = m->CellByLocalID(q);
if( cell.GetStatus() != Element::Ghost )
Text.SetAnnotation(P.Index(cell),"Cell-centered pressure value");
}
if(hybrid)for( int q = 0; q < m->FaceLastLocalID(); ++q ) if( m->isValidFace(q) )
{
Face face = m->FaceByLocalID(q);
if( face.GetStatus() != Element::Ghost )
{
if( tag_BC.isValid() && face.HaveData(tag_BC) )
Text.SetAnnotation(P.Index(face),"Pressure guided by boundary condition");
else
Text.SetAnnotation(P.Index(face),"Interface pressure");
}
}
}
std::cout << "Matrix was annotated" << std::endl;
do
{
Resid.Clear(); //clean up the residual
double tttt = Timer();
int total = 0, dmp = 0;
#if defined(USE_OMP)
#pragma omp parallel for reduction(+:total) reduction(+:dmp)
#endif
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) ) //loop over cells
{
Cell cell = m->CellByLocalID(q);
ElementArray<Face> faces = cell->getFaces(); //obtain faces of the cell
int NF = (int)faces.size();
rMatrix K = rMatrix::FromTensor(cell->RealArrayDF(tag_K).data(),cell->RealArrayDF(tag_K).size());
rMatrix L = rMatrix::FromDiagonal(cell->RealArrayDV(tag_L).data(),NF);
rMatrix W(cell->RealArray(tag_W).data(),NF,NF);
//rMatrix R(cell->RealArrayDV(tag_R).data(),NF,3); //Matrix for directions
//rMatrix N(cell->RealArrayDV(tag_N).data(),NF,3); //Matrix for directions
//rMatrix G(cell->RealArrayDV(tag_G).data(),3,NF); //Matrix for gradient
//rMatrix V(cell->RealArrayDV(tag_V).data(),NF,3); //Matrix for transversal directions
vMatrix DP(NF,1); //vector of pressure differences on faces
vMatrix FLUX(NF,1);
if( hybrid )
{
for(int k = 0; k < NF; ++k)
DP(k,0) = (P[faces[k]] - P[cell]);
}
else
{
for(int k = 0; k < NF; ++k)
{
Cell n = cell.Neighbour(faces[k]);
if( n.isValid() )
DP(k,0) = (P[n] - P[cell]);
else if( faces[k].HaveData(tag_BC) )
{
real_array BC = faces[k].RealArray(tag_BC);
DP(k,0) = BC[2] - BC[0]*P[cell];
}
else DP(k,0) = 0;
}
}
FLUX = W*DP; //fluxes on faces
for(int k = 0; k < NF; ++k) //loop over faces of current cell
{
var_array Q = faces[k]->VariableArray(tag_Q);
int ind = faces[k].BackCell() == cell ? 0 : 1;
Q[ind] = FLUX(k,0);
}
}
#if defined(USE_OMP)
#pragma omp parallel for reduction(+:total) reduction(+:dmp)
#endif
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) ) //loop over cells
{
Cell cell = m->CellByLocalID(q);
ElementArray<Face> faces = cell->getFaces(); //obtain faces of the cell
int NF = (int)faces.size();
//rMatrix G(cell->RealArrayDV(tag_G).data(),3,NF); //Matrix for gradient
//rMatrix V(cell->RealArrayDV(tag_V).data(),NF,3); //Matrix for transversal directions
rMatrix K = rMatrix::FromTensor(cell->RealArrayDF(tag_K).data(),cell->RealArrayDF(tag_K).size());
rMatrix W(cell->RealArray(tag_W).data(),NF,NF);
vMatrix J(NF,NF);
//vMatrix M(NF,NF);
//rMatrix W(NF,NF);
//rMatrix R(cell->RealArrayDV(tag_R).data(),NF,3); //Matrix for directions
//rMatrix N(cell->RealArrayDV(tag_N).data(),NF,3); //Matrix for directions
rMatrix L = rMatrix::FromDiagonal(cell->RealArrayDV(tag_L).data(),NF);
vMatrix DP(NF,1); //vector of pressure differences on faces
vMatrix FLUX(NF,1); //computed flux on faces
//vMatrix iM1(3,3), U(3,3), S(3,3), V(3,3);
//rMatrix W(cell->RealArrayDV(tag_W).data(),NF,NF); //Matrix for gradient
if( hybrid )
{
for(int k = 0; k < NF; ++k)
DP(k,0) = (P[faces[k]] - P[cell]);
}
else
{
for(int k = 0; k < NF; ++k)
{
Cell n = cell.Neighbour(faces[k]);
if( n.isValid() )
DP(k,0) = (P[n] - P[cell]);
else if( faces[k].HaveData(tag_BC) )
{
real_array BC = faces[k].RealArray(tag_BC);
DP(k,0) = BC[2] - BC[0]*P[cell];
}
else DP(k,0) = 0;
}
}
//std::cout << "cell " << cell->LocalID() << std::endl;
for(int k = 0; k < NF; ++k) if( !faces[k].Boundary() )//loop over faces of current cell
{
var_array Q = faces[k]->VariableArray(tag_Q);
int ind1,ind2;
ind1 = faces[k].BackCell() == cell ? 0 : 1;
ind2 = 1-ind1;
/*
if( Q[ind1]*Q[ind2] <= 0 )
J(k,k) = soft_fabs(Q[ind2],1.0e-8)/(soft_fabs(Q[ind2],1.0e-8)+soft_fabs(Q[ind1],1.0e-8))*2;//(1-soft_sign(Q[ind1]*Q[ind2],1.0e-8)) + 1.0e-9;
else
J(k,k) = 0.0;
*/
//J(k,k) = variation(soft_fabs(Q[ind2],1.0e-8)/(soft_fabs(Q[ind2],1.0e-8)+soft_fabs(Q[ind1],1.0e-8))*(1-soft_sign(Q[ind1]*Q[ind2],1.0e-8)),0.5) + 1.0e-9;
J(k,k) = variation((Q[ind2]*Q[ind2] - Q[ind1]*Q[ind1] - 2*Q[ind1]*Q[ind2] + 1.0e-20)/(2*(Q[ind2]*Q[ind2]+Q[ind1]*Q[ind1])+2.0e-20),0.75) + 0.5 ;
//
//J(k,k) = (-2*soft_fabs(Q[ind1]*Q[ind2],1.0e-8) + Q[ind1]*Q[ind2] + 2*Q[ind2]*soft_fabs(Q[ind2],1.0e-8)*soft_sign(Q[ind1],1.0e-8) - Q[ind1]*Q[ind1])/(Q[ind1]*Q[ind1]+4*soft_fabs(Q[ind1]*Q[ind2],1.0e-8)+Q[ind2]*Q[ind2]+1.0e-20) + 1;
//limiter *= 0.5*J(k,k);
//if( Q[ind1]*Q[ind2] < 0.0 )
// J(k,k) = variation(2*(fabs(Q[ind2])+1.0e-36)/(fabs(Q[ind1])+fabs(Q[ind2])+2.0e-36),0.25);
//else J(k,k) = 0;
//J(k,k) = (Q[ind2]*Q[ind2] - Q[ind1]*Q[ind1] - 2*Q[ind1]*Q[ind2])/(2*(Q[ind2]*Q[ind2]+Q[ind1]*Q[ind1])+1.0e-20) + 0.5;
//std::cout << k << ": " << get_value(Q[ind1]) << " " << get_value(Q[ind2]) << std::endl;
//std::cout << "Q1 " << get_value(Q[ind1]) << " Q2 " << get_value(Q[ind2]) << " " << get_value(J(k,k)) << std::endl;
}
else
{
//std::cout << k << ": bnd" << std::endl;
J(k,k) = 1;
}
FLUX = (L + J*W)*DP;
if( cell.GetStatus() != Element::Ghost )
{
for(int k = 0; k < NF; ++k) //loop over faces of current cell
Resid[P.Index(cell)] += FLUX(k,0);
}
if( hybrid ) for(int k = 0; k < NF; ++k) //loop over faces of current cell
{
if( faces[k].GetStatus() == Element::Ghost ) continue;
int index = P.Index(faces[k]);
Locks.Lock(index);
if( tag_BC.isValid() && faces[k].HaveData(tag_BC) )
{
real_array BC = faces[k].RealArray(tag_BC);
Resid[index] -= BC[0]*P[faces[k]] + BC[1]*FLUX(k,0) - BC[2];
}
else
Resid[index] -= FLUX(k,0);
Locks.UnLock(index);
}
} //end of loop over cells
if( tag_F.isValid() )
{
#if defined(USE_OMP)
#pragma omp parallel for
#endif
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) )
{
Cell cell = m->CellByLocalID(q);
if( cell.GetStatus() == Element::Ghost ) continue;
if( cell->HaveData(tag_F) ) Resid[P.Index(cell)] += cell->Real(tag_F)*cell->Volume();
}
}
std::cout << "assembled in " << Timer() - tttt << "\t\t\t" << std::endl;
Resid.Rescale();
//Resid.GetJacobian().Save("jacobian.mtx",&Text);
//Resid.GetResidual().Save("residual.mtx");
std::cout << "Nonlinear residual: " << Resid.Norm() << "\t\t" << std::endl;
if( Resid.Norm() < 1.0e-5 ) break;
tttt = Timer();
//Solver S(Solver::INNER_ILU2);
Solver S(Solver::INNER_MPTILUC);
//Solver S(Solver::SUPERLU);
S.SetParameterReal("relative_tolerance", 1.0e-12);
S.SetParameterReal("absolute_tolerance", 1.0e-9);
S.SetParameterReal("drop_tolerance", 5.0e-2);
S.SetParameterReal("reuse_tolerance", 1.0e-3);
S.SetMatrix(Resid.GetJacobian());
//std::fill(Update.Begin(),Update.End(),0.0);
if( S.Solve(Resid.GetResidual(),Update) )
{
#if defined(USE_OMP)
#pragma omp parallel for
#endif
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) )
{
Cell cell = m->CellByLocalID(q);
cell->Real(tag_P) -= Update[P.Index(cell)];
}
if( hybrid )
{
#if defined(USE_OMP)
#pragma omp parallel for
#endif
for( int q = 0; q < m->FaceLastLocalID(); ++q ) if( m->isValidFace(q) )
{
Face face = m->FaceByLocalID(q);
face->Real(tag_P) -= Update[P.Index(face)];
}
}
m->ExchangeData(tag_P, CELL|(hybrid?FACE:NONE), 0);
{
std::stringstream str;
str << "iter" << nit;
if( m->GetProcessorsNumber() == 1 )
str << ".vtk";
else
str << ".pvtk";
m->Save(str.str());
}
}
else
{
std::cout << "Unable to solve: " << S.GetReason() << std::endl;
break;
}
std::cout << "solved in " << Timer() - tttt << "\t\t\t" << std::endl;
++nit;
} while( Resid.Norm() > 1.0e-5 && nit < 100); //check the residual norm
}
std::cout << "Solved problem in " << Timer() - ttt << " seconds with " << nit << " iterations " << std::endl;
if( m->HaveTag("REFERENCE_SOLUTION") )
{
Tag tag_E = m->CreateTag("ERROR",DATA_REAL,CELL,NONE,1);
Tag tag_R = m->GetTag("REFERENCE_SOLUTION");
real C, L2, volume;
C = L2 = volume = 0.0;
for( int q = 0; q < m->CellLastLocalID(); ++q ) if( m->isValidCell(q) )
{
Cell cell = m->CellByLocalID(q);
real err = cell->Real(tag_P) - cell->Real(tag_R);
real vol = cell->Volume();
if( C < fabs(err) ) C = fabs(err);
L2 += err*err*vol;
volume += vol;
cell->Real(tag_E) = err;
}
L2 = sqrt(L2/volume);
std::cout << "Error on cells, C-norm " << C << " L2-norm " << L2 << std::endl;
C = L2 = volume = 0.0;
if( false )
{
if( tag_R.isDefined(FACE) )
{
tag_E = m->CreateTag("ERROR",DATA_REAL,FACE,NONE,1);
for( int q = 0; q < m->FaceLastLocalID(); ++q ) if( m->isValidFace(q) )
{
Face face = m->FaceByLocalID(q);
real err = face->Real(tag_P) - face->Real(tag_R);
real vol = (face->BackCell()->Volume() + (face->FrontCell().isValid() ? face->FrontCell()->Volume() : 0))*0.5;
if( C < fabs(err) ) C = fabs(err);
L2 += err*err*vol;
volume += vol;
face->Real(tag_E) = err;
}
L2 = sqrt(L2/volume);
std::cout << "Error on faces, C-norm " << C << " L2-norm " << L2 << std::endl;
}
else std::cout << "Reference solution was not defined on faces" << std::endl;
}
}
if( m->GetProcessorsNumber() == 1 )
m->Save("out.vtk");
else
m->Save("out.pvtk");
m->Save("out.xml");
delete m; //clean up the mesh
}
else
{
std::cout << argv[0] << " mesh_file" << std::endl;
}
#if defined(USE_PARTITIONER)
Partitioner::Finalize(); // Finalize the partitioner activity
#endif
Solver::Finalize(); // Finalize solver and close MPI activity
return 0;
}